首页> 外文期刊>International Journal of Heat and Fluid Flow >Complex network analysis of forced synchronization in a hydrodynamically self-excited jet
【24h】

Complex network analysis of forced synchronization in a hydrodynamically self-excited jet

机译:流体动力自激射流中强迫同步的复杂网络分析

获取原文
获取原文并翻译 | 示例
       

摘要

Previous experiments by Li and Juniper (2013) have shown that a hydrodynamically self-excited jet can synchronize with external acoustic forcing via one of two possible routes: a saddle-node (SN) bifurcation or a torus-death (TD) bifurcation. In this study, we use complex networks to analyze and forecast these two routes to synchronization in a prototypical self-excited flow - an axisymmetric low-density jet at an operating condition close to its first Hopf point. We build the complex networks using two different methods: the visibility algorithm and the recurrence condition. We find that the networks built with the visibility algorithm are high-clustering, hierarchical, and assortative in the degree of their vertices, although only the TD networks are scale free. Nevertheless, we find that the assortativity coefficient is a sufficiently sensitive indicator by which to distinguish between the SN and TD routes to synchronization and to forecast the onset of synchronization. As for the networks built with the recurrence condition, we find that their topological features differ between the two routes to synchronization, but vary predictably along either route. We quantify these variations using statistical measures such as the mean degree, spectral radius, and transitivity dimension. This study shows that complex networks can be a useful tool for distinguishing between the SN and TD routes to synchronization, and for forecasting the proximity of a system to its synchronization boundaries. These findings could open up new opportunities for complex networks to be used in the development of open-loop control strategies for hydrodynamically self-excited flows.
机译:Li和Juniper(2013)的先前实验表明,流体动力学自激射流可以通过以下两种可能的途径之一与外部声强迫同步:马鞍形结(SN)分叉或圆环-死亡(TD)分叉。在这项研究中,我们使用复杂的网络来分析和预测这两种途径,以在典型的自激流中实现同步-轴对称低密度射流在接近其第一霍普夫点的工作条件下运行。我们使用两种不同的方法来构建复杂的网络:可见性算法和递归条件。我们发现,尽管只有TD网络是无标度的,但是用可见性算法构建的网络在顶点度上是高度聚类的,层次化的和可分类的。尽管如此,我们发现分类系数是一个足够敏感的指标,通过该指标可以区分SN和TD路由进行同步并预测同步的开始。对于使用重复条件构建的网络,我们发现它们的拓扑特征在两条同步路径之间有所不同,但在任一条路径上都可以预测地变化。我们使用统计量度(例如平均度,光谱半径和传递性维度)来量化这些变化。这项研究表明,复杂的网络可以成为区分SN和TD同步路径以及预测系统与其同步边界的接近程度的有用工具。这些发现可能为复杂的网络开辟新的机会,以用于开发水动力自激流的开环控制策略。

著录项

  • 来源
  • 作者单位

    Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China;

    Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China|Brown Univ, Sch Engn, Providence, RI 02912 USA;

    Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Clear Water Bay, Hong Kong, Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Flow instability; Flow control; Jets; Complex networks;

    机译:流量不稳定性;流量控制;Jets;复杂网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号