首页> 外文期刊>International Journal of Heat and Fluid Flow >Turbulent transport in an inclined jet in crossflow
【24h】

Turbulent transport in an inclined jet in crossflow

机译:斜流中错流的湍流传输

获取原文
获取原文并翻译 | 示例
           

摘要

The present study experimentally investigates a turbulent jet in crossflow relevant to film cooling applications. The jet is inclined at 30°, and its mean velocity is the same as the crossflow. Magnetic resonance imaging is used to obtain the full three-dimensional velocity and concentration fields, whereas Reynolds stresses are obtained along selected planes by Particle Image Velocimetry. The critical role of the counter-rotating vortex pair in the mixing process is apparent from both velocity and concentration fields. The jet entrainment is not significantly higher than in an axisymmetric jet without crossflow, because the proximity of the wall inhibits the turbulent transport. Reynolds shear stresses correlate with velocity and concentration gradients, consistent with the fundamental assumptions of simple turbulence models. However the eddy viscosity is strongly anisotropic and non-homogeneous, being especially low along the leeward side of the jet close to injection. Turbulent diffusion acts to decouple mean velocity and concentration fields, as demonstrated by the drop in concentration flux within the streamtube issued from the hole. Volume-averaged turbulent diffusivity is calculated using a mass-flux balance across the streamtube emanating from the jet hole, and it is found to vary slowly in the streamwise direction. The data are compared with Reynolds-Averaged Navier-Stokes simulations with standard k - e closure and an optimal turbulent Schmidt number. The computations underestimate the strength of the counter-rotating vortex pair, due to an overestimated eddy viscosity. On the other hand the entrainment is increasingly underpredicted downstream of injection. To capture the correct macroscopic trends, eddy viscosity and eddy diffusivity should vary spatially in different ways. Therefore a constant turbulent Schmidt number formulation is inadequate for this flow.
机译:本研究实验性地研究了与薄膜冷却应用有关的横流中的湍流射流。射流倾斜30°,其平均速度与横流相同。磁共振成像用于获得完整的三维速度场和浓度场,而雷诺应力是通过“粒子图像测速”沿选定平面获得的。从速度场和浓度场都可以明显看出反向涡旋对在混合过程中的关键作用。射流的夹带并不显着高于没有横流的轴对称射流,因为壁的靠近会抑制湍流的传输。雷诺剪切应力与速度和浓度梯度相关,这与简单湍流模型的基本假设一致。然而,涡流粘度是强烈各向异性的并且是不均匀的,沿着靠近注入的射流的背风侧特别低。湍流扩散的作用是使平均速度场和浓度场解耦,如从孔中发出的流管内的浓度通量下降所证明的那样。体积平均湍流扩散率是使用从喷孔发出的整个流管的质量通量平衡来计算的,发现在流向缓慢变化。将数据与具有标准k-e闭合和最佳湍流施密特数的雷诺平均Navier-Stokes模拟进行比较。由于涡流粘度过高,计算结果低估了反向旋转涡流对的强度。另一方面,夹带在注射的下游越来越少。为了捕捉正确的宏观趋势,涡流粘度和涡流扩散率应以不同的方式在空间上变化。因此,恒定的湍流施密特数公式不足以实现这种流动。

著录项

  • 来源
    《International Journal of Heat and Fluid Flow》 |2013年第10期|149-160|共12页
  • 作者单位

    Department of Mechanical Engineering, Stanford University, Stanford, CA, USA;

    Department of Civil and Mechanical Engineering, US Military Academy, West Point, NY, USA;

    Department of Mechanical Engineering, Stanford University, Stanford, CA, USA;

    Department of Mechanical Engineering, Stanford University, Stanford, CA, USA;

    Department of Mechanical Engineering, Stanford University, Stanford, CA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Jet in crossflow; Film cooling; Turbulent mixing; Turbulent diffusivity;

    机译:射流错流薄膜冷却;湍流混合;湍流扩散率;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号