首页> 外文期刊>International Journal of Heat and Fluid Flow >Particle deposition model for particulate flows at high temperatures in gas turbine components
【24h】

Particle deposition model for particulate flows at high temperatures in gas turbine components

机译:燃气轮机组件中高温时颗粒流的颗粒沉积模型

获取原文
获取原文并翻译 | 示例
           

摘要

This study proposes an improved physical model to predict sand deposition at high temperature in gas turbine components. This model differs from its predecessor (Sreedharan and Tafti, 2011) by improving the sticking probability by accounting for the energy losses during particle-wall collision based on our previous work (Singh and Tafti, 2013). This model predicts the probability of sticking based on the critical viscosity approach and collision losses during a particle-wall collision. The current model is novel in the sense that it predicts the sticking probability based on the impact velocity along with the particle temperature. To test the model, deposition from a sand particle laden jet impacting on a flat coupon geometry is computed and the results obtained from the numerical model are compared with experiments (Delimont et al., 2014) conducted at Virginia Tech, on a similar geometry and flow conditions, for jet temperatures of 950 degrees C, 1000 degrees C and 1050 degrees C. Large Eddy Simulations (LES) are used to model the flow field and heat transfer, and sand particles are modeled using a discrete Lagrangian framework. Results quantify the impingement and deposition for 20-40 mu m sand particles. The stagnation region of the target coupon is found to experience most of the impingement and deposition. For 950 degrees C jet temperature, around 5% of the particle impacting the coupon deposit while the deposition for 1000 degrees C and 1050 degrees C is 17% and 28%, respectively. In general, the sticking efficiencies calculated from the model show good agreement with the experiments for the temperature range considered. (C) 2014 Elsevier Inc. All rights reserved.
机译:这项研究提出了一种改进的物理模型,以预测燃气轮机组件中高温下的沙粒沉积。该模型与之前的模型(Sreedharan and Tafti,2011)不同,它基于我们先前的工作(Singh and Tafti,2013),通过考虑粒子-壁碰撞过程中的能量损失来提高粘着概率。该模型基于临界粘度方法和粒子-壁碰撞过程中的碰撞损失来预测粘附的可能性。当前模型是新颖的,因为它基于冲击速度和颗粒温度来预测粘附概率。为了测试模型,计算了加载到平面试样几何形状上的含沙颗粒射流的沉积物,并将数值模型获得的结果与在弗吉尼亚理工学院进行的类似几何形状的实验(Delimont等,2014)进行了比较。射流温度为950摄氏度,1000摄氏度和1050摄氏度的流动条件。使用大涡模拟(LES)来模拟流场和传热,并使用离散的拉格朗日框架来模拟砂粒。结果量化了20-40微米砂粒的撞击和沉积。发现目标试样的停滞区域经历了大部分撞击和沉积。对于950摄氏度的喷射温度,约5%的颗粒会影响试样块的沉积,而1000摄氏度和1050摄氏度的沉积分别为17%和28%。通常,从模型计算得出的粘着效率与所考虑温度范围内的实验显示出良好的一致性。 (C)2014 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号