...
首页> 外文期刊>International Journal of Fatigue >Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions
【24h】

Molecular dynamic modelling of fatigue crack growth in aluminium using LEFM boundary conditions

机译:基于LEFM边界条件的铝疲劳裂纹扩展的分子动力学模拟。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A molecular dynamic (MD) model of a crack in pure aluminium has been developed with isotropic Linear Elastic Fracture Mechanics (LEFMs) boundary displacements that simulates the fatigue crack growth process. The model consists of a cylindrical region filled with atoms around a crack tip and subject to boundary displacements that change due to cyclic loading. A sinusoidal load that produced a K _(max) = 1.0 MPam~(1/2)was applied to produce fatigue crack growth using three different atomic potentials for aluminium at T = 20 K, and a range of different K _(max) Each run consisted of the application of fifteen or more loading cycles. In some cases, the crack tip was seen to advance in each cycle typical of fatigue, however, growth was smooth and continuous during the entire cycle with contraction occurring during the unloading phase of the cycle. The model contained 3 × 10~6 atoms and had a diameter and width of 20 nm. This width was just large enough for fragments of sessile dislocations to form and couple with the glissile dislocations emitted from the crack tip, resulting in work hardening about the crack tip. The model was oriented for cracking on the {110} plane in the <100> direction. Crack advance was observed to be due to a combination of dislocation emission and atomic separation.
机译:已经开发出了具有等向性线性弹性断裂力学(LEFM)边界位移的纯铝裂纹的分子动力学(MD)模型,该模型模拟了疲劳裂纹的生长过程。该模型由一个充满裂纹尖端周围原子的圆柱区域组成,该边界区域由于循环载荷而发生变化。使用在T = 20 K时铝的三个不同原子势和一系列不同的K _(max)施加产生K _(max)= 1.0 MPam〜(1/2)的正弦载荷来产生疲劳裂纹扩展。每次运行包括十五个或更多个加载周期的应用。在某些情况下,裂纹尖端在每个典型的疲劳周期中都会前进,但是,在整个周期中生长是平稳且连续的,并且在该周期的卸载阶段会发生收缩。该模型包含3×10〜6个原子,直径和宽度为20 nm。该宽度刚好足以使固位错的碎片形成并与裂纹尖端发出的易滑位错耦合,从而使裂纹尖端周围的工作变硬。该模型的定向方向是在{110}平面上沿<100>方向开裂。观察到裂纹发展是由于位错发射和原子分离的结合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号