首页> 外文期刊>International Journal of Fatigue >A novel methodology to predict the endurance domain for a material and its evolution using a generalized fracture mechanics framework
【24h】

A novel methodology to predict the endurance domain for a material and its evolution using a generalized fracture mechanics framework

机译:一种使用广义断裂力学框架预测材料耐力范围及其演变的新颖方法

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Materials in rotating machinery are typically subjected to loading conditions that combine both low cycle fatigue (LCF) and high cycle vibratory fatigue (HCF). In operating conditions, the number of allowable LCF cycles may be limited, but under no circumstances, superimposed HCF vibratory cycles can be allowed to produce fatigue damage. This paper aims at proposing an approach to account for the effect of variable amplitude LCF cycles on the endurance domain relative to HCF cycles. For this purpose, a LEFM-based approach is proposed. The material is assumed to contain flaws, and their growth is assumed to stem from crack tip plasticity. As a consequence of these "classical" assumptions, the endurance domain of the material can alternatively be viewed as an elastic domain for the crack tip region. A generalized von Mises yield criterion is hence introduced to model that elastic domain. For this purpose, rather than considering the distortional elastic energy density (von Mises), the Westergaard's stress field is used to calculate the distortional elastic energy within a distance δ from the crack tip. A non-local yield criterion for the crack tip region is obtained. The first non-singular terms (e.g., the T-stresses) are included in the Westergaard's stress functions to make it possible to use it also for mechanically short cracks. Then to account for the effect of LCF cycles, the elastic domain is allowed to evolve when crack tip plasticity occurs. The center of the endurance domain is defined as an internal variable that stands for the internal stress field within the crack tip region due to constrained plastic deformation. As long as the loading path remains inside the elastic domain, no plasticity, and hence no crack growth, is expected. If the yield sur face is reached, plastic strain occurs and the elastic domain is displaced. In this study, elastic-plastic finite element computations are used to determine whether the crack tip region behaves elastically or plastically. For this purpose, the velocity field within the crack tip region is partitioned into elastic and plastic parts, each part being approached as the product of an intensity factor and a spatial reference field. The plastic intensity factor is then used as a global measure of the plasticity rate within the crack tip region. In this paper, the approach was applied to a forged Ti-6A1-4V titanium alloy, used in compressor blades of gas turbine engines.
机译:旋转机械中的材料通常要承受结合了低周疲劳(LCF)和高周振动疲劳(HCF)的加载条件。在运行条件下,允许的LCF循环次数可能会受到限制,但是在任何情况下,都不允许叠加的HCF振动循环产生疲劳损伤。本文旨在提出一种方法,以解决可变幅度LCF周期相对于HCF周期对耐力域的影响。为此,提出了一种基于LEFM的方法。假定该材料包含裂纹,并且假定裂纹的增长是由于裂纹尖端的可塑性引起的。这些“经典”假设的结果是,材料的耐力范围可以替代地视为裂纹尖端区域的弹性范围。因此,引入了广义冯·米塞斯屈服准则来对该弹性域进行建模。为此,Westergaard应力场用于计算变形弹性能,而不是考虑变形弹性能密度(冯·米塞斯),该距离等于裂纹尖端的距离δ。获得了裂纹尖端区域的非局部屈服准则。 Westergaard的应力函数中包含第一个非奇异项(例如T应力),以使其也可以用于机械性短裂纹。然后考虑到LCF循环的影响,当出现裂纹尖端可塑性时,允许弹性域演化。耐力区域的中心定义为一个内部变量,代表由于受约束的塑性变形而在裂纹尖端区域内的内部应力场。只要加载路径保持在弹性区域内,就不会产生可塑性,因此不会产生裂纹。如果达到屈服面,则会发生塑性应变,并且弹性域发生位移。在这项研究中,使用弹塑性有限元计算来确定裂纹尖端区域是弹性还是塑性行为。为此,将裂纹尖端区域内的速度场分为弹性和塑性部分,每个部分都作为强度因数和空间参考场的乘积而接近。然后将塑性强度因子用作裂纹尖端区域内塑性速率的整体度量。在本文中,该方法被应用于锻造的Ti-6A1-4V钛合金,该合金用于燃气涡轮发动机的压气机叶片。

著录项

  • 来源
    《International Journal of Fatigue》 |2012年第2012期|p.183-193|共11页
  • 作者单位

    LMT-Cachan, ENS Cachan/CNRS/UPMC/UniverSud Paris, 61, Avenue du President Wilson, 94235 Cachan, France,Snecma-Safran, Rond-point Rene Ravaud, Reau, 77550 Moissy-Cramayel, France;

    LMT-Cachan, ENS Cachan/CNRS/UPMC/UniverSud Paris, 61, Avenue du President Wilson, 94235 Cachan, France;

    Snecma-Safran, Rond-point Rene Ravaud, Reau, 77550 Moissy-Cramayel, France;

    Snecma-Safran, Rond-point Rene Ravaud, Reau, 77550 Moissy-Cramayel, France;

    Turbomeca-Safran, F-64511 Bordes, France;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    endurance criterion; LCF/HCF; crack tip plasticity; fatigue; short crack;

    机译:耐力标准;LCF / HCF;裂纹尖端塑性疲劳;短裂纹;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号