...
首页> 外文期刊>International Journal of Fatigue >Fatigue characterization of structural bamboo materials under flexural bending
【24h】

Fatigue characterization of structural bamboo materials under flexural bending

机译:弯曲弯曲下结构竹材料的疲劳特性

获取原文
获取原文并翻译 | 示例

摘要

Bamboo, as a natural functionally-graded (FG) bio-composite material, exhibits excellent load-bearing properties, such as flexibility and fracture toughness. In construction field or other load-bearing applications, bamboo along with bamboo-based structural materials are often subjected to cyclic loading. However, works in the current literature are rarely associated with the fatigue behavior of this biomate-rial. The present work emphasizes on the evaluation of the flexural fatigue behavior of bamboo strips under different loading configurations. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited anisotropic fatigue response, including fatigue life, hysteresis loops and residual stiffness. Based on the in situ observation and fracture morphology analysis, the hierarchical fiber/foam-like parenchyma cells (PCs) plays a critical role in alternating the key factors for determining the remarkably different crack propagation mechanisms. A two-parameter Weibull function was used to evaluate the failure probability of bamboo strips subjected to flexural loading. Likewise, in order to quantitatively assess the relationship between the extension of damage and number of cycles, an analytical model in terms of residual stiffness has been proposed. Lastly, we expect that this work could serve as the guideline to assist the raw bamboo materials and bamboo-based composites into many other structural engineering applications.
机译:竹作为一种天然的功能梯度(FG)生物复合材料,具有出色的承重性能,例如柔韧性和断裂韧性。在建筑领域或其他承重应用中,竹子和基于竹子的结构材料经常受到循环荷载。然而,当前文献中的工作很少与该生物材料的疲劳行为相关。目前的工作重点是在不同的载荷配置下评估竹带的弯曲疲劳行为。结果表明,维管束沿厚度方向的梯度分布是引起各向异性疲劳响应的主要因素,包括疲劳寿命,磁滞回线和残余刚度。基于现场观察和断裂形态分析,分层的纤维/泡沫状薄壁组织细胞(PC)在交替选择决定明显不同的裂纹扩展机制的关键因素中起着关键作用。使用两参数威布尔函数评估竹条在弯曲荷载作用下的破坏概率。同样,为了定量评估损伤扩展和循环次数之间的关系,提出了一种基于残余刚度的分析模型。最后,我们希望这项工作可以作为指导,以帮助将原始的竹材料和竹基复合材料应用于许多其他结构工程应用中。

著录项

  • 来源
    《International Journal of Fatigue 》 |2017年第1期| 126-135| 共10页
  • 作者单位

    Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China,State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;

    Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China;

    Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China,Department of Aircraft Airworthiness Engineering, School of Transportation Science and Engineering, Beihang University, Beijing 100191, China;

    Department of Mechanical and Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China,Centre for Advanced Structural Materials (CASM), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Bamboo; Fatigue behavior; In situ flexural bending test; Fatigue failure model; Micromechanics;

    机译:竹;疲劳行为;原位弯曲试验疲劳失效模型;微力学;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号