首页> 外文期刊>International Journal of Fatigue >Fatigue crack propagation of aerospace aluminum alloy 7075-T651 in high altitude environments
【24h】

Fatigue crack propagation of aerospace aluminum alloy 7075-T651 in high altitude environments

机译:航空铝合金7075-T651在高海拔环境下的疲劳裂纹扩展

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Fracture mechanics fatigue testing of 7075-T651 in environmental conditions pertinent to high altitude airframe operation established the fatigue crack growth behavior over a wide span of stress intensity range (△K). Two distinct methods were used to control the environmental severity parameter of water vapor pressure over frequency (P_(H2O)/f): (1) at 23 ℃ the P_(H2O) value was controlled by an ultra-high vacuum system into which purified water was leaked, and (2) the testing temperature was decreased to temperatures as low as - 65 ℃ allowing an equilibrium P_(H2O) over ice at a given temperature to be maintained. Decreasing P_(H2O) at 23 ℃ (at a constant f) results in a drastic reduction in the fatigue behavior, strongly suggesting that the reduction in moisture is a primary mechanism controlling the retarded fatigue crack growth behavior observed at low termperatures. Additionally, studies conducted at a corresponding P_(H2O)//with various testing temperatures down to -15 ℃ show that fatigue crack growth rate (FGCR) behavior is consistent with data generated at 23 ℃. However, at temperatures below - 30 ℃, low T tests exhibit crack growth rates below the 23 ℃ results despite having the same P_(H2O)/f value. This suggests that the strong role of environmental moisture reduction is augmented by a separate temperature dependent effect on either the inherent dislocation behavior and/or a separate aspect of the Hydrogen Environment Embrittlement (HEE) process. Mechanisms based purely on temperature dependent dislocation behavior fail to fully describe the experimental observations. Temperature dependent impacts on the HEE process (apart from the reduction of the P_(H2O)) via influencing the surface reaction process to generate atomic H at the crack tip or the diffusion of the H within the crack tip process zone do not adequately describe the observed experimental data. Furthermore, a dip in the crack growth rate at - 30 ℃ suggests that molecular flow of H_2O from the bulk to the crack tip is in part responsible for the temperature dependent behavior. Such behavior is hypothesized to be caused by the preferential onset of a rough crack wake morphology (likely slip band cracking) at low temperatures, that impedes molecular flow from the bulk to the crack tip. This behavior strongly suggests an important temperature dependence of the dislocation motion or H-dislocation interactions on the observed FCGR behavior.
机译:7075-T651的断裂力学疲劳测试在与高空机体操作有关的环境条件下进行,建立了在应力强度范围(△K)较宽范围内的疲劳裂纹扩展行为。使用两种不同的方法来控制水蒸气压力在整个频率范围内的环境严重性参数(P_(H2O)/ f):(1)在23℃下,通过超高真空系统控制P_(H2O)值,漏水,并且(2)将测试温度降至低至-65℃,从而可以在给定温度下维持冰上的P​​_(H2O)平衡。 P_(H2O)在23℃(恒定f)下的降低会导致疲劳行为的急剧降低,这强烈表明水分的减少是控制低温度下观察到的疲劳裂纹扩展行为的主要机理。此外,在相应的P_(H2O)//和低至-15℃的各种测试温度下进行的研究表明,疲劳裂纹扩展速率(FGCR)行为与23℃生成的数据一致。但是,在低于-30℃的温度下,尽管具有相同的P_(H2O)/ f值,但低T测试的裂纹扩展速率却低于23℃。这表明,通过对氢的环境位错行为和/或氢环境脆化(HEE)过程的不同方面的单独的温度依赖性影响,可以增强减少环境水分的作用。纯粹基于温度依赖性位错行为的机制无法完全描述实验观察结果。通过影响表面反应过程在裂纹尖端产生原子H或H在裂纹尖端工艺区内的扩散,对HEE工艺的温度依赖性影响(除P_(H2O)还原外)没有充分描述观察实验数据。此外,在-30℃时裂纹扩展速率的下降表明,H_2O从块体到裂纹尖端的分子流动部分地取决于温度。据推测,这种行为是由于低温下粗糙的裂纹唤醒形态(可能是滑带裂纹)的优先出现所引起的,这种形态阻碍了分子从块体到裂纹尖端的流动。这种行为强烈表明位错运动或H位错相互作用对观察到的FCGR行为的重要温度依赖性。

著录项

  • 来源
    《International Journal of Fatigue》 |2018年第1期|196-207|共12页
  • 作者单位

    University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904, USA;

    University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904, USA;

    University of Virginia, Department of Materials Science and Engineering, Charlottesville, VA 22904, USA;

    Arconic Technology Center, New Kensington, PA 15069, USA,The Ohio State University, Department of Materials Science and Engineering, Fontana Corrosion Center, Columbus, OH 43210, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fatigue; Hydrogen embrittlement; Fracture mechanics; Aluminum; Temperature;

    机译:疲劳;氢脆断裂力学;铝;温度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号