...
首页> 外文期刊>International Journal of Fatigue >On the molecular dynamics simulation of fatigue behavior of pre-cracked aluminum chip for NEMS application: Effect of cyclic loading mode and surface roughness geometry
【24h】

On the molecular dynamics simulation of fatigue behavior of pre-cracked aluminum chip for NEMS application: Effect of cyclic loading mode and surface roughness geometry

机译:用于NEMS的预裂铝芯片疲劳行为的分子动力学模拟:循环加载模式和表面粗糙度几何形状的影响

获取原文
获取原文并翻译 | 示例

摘要

This study focuses on investigating the dependency of fatigue nanomechanisms to the cyclic loading mode and notch shape in single-crystal aluminum nanoplates by molecular dynamics simulation. Fatigue damage in tension-tension mode is extensively dominated by nanovoids formation and persistent slip bands. Surprisingly, the tension-compression mode leads to nanovoids formation with twofold behavior, de-voiding process and substructure development preventing crack propagation stemming from the reversal strain path. It is proved that crack propagation rate is not sensitive to the notch shape in tension-tension mode. Conversely, sharp notch results in longer fatigue life than blunt notch in tension-compression mode.
机译:本研究的重点是通过分子动力学模拟研究疲劳纳米机制对单晶铝纳米板中循环加载模式和缺口形状的依赖性。张力-张力模式下的疲劳损伤主要由纳米空隙的形成和持续的滑动带主导。出乎意料的是,张力-压缩模式导致具有双重行为的纳米空洞形成,空洞化过程和子结构发展,从而防止了由反向应变路径引起的裂纹扩展。证明了在拉伸-拉伸模式下,裂纹扩展速率对切口形状不敏感。相反,与在压力压缩模式下的钝口相比,锐口可导致更长的疲劳寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号