首页> 外文期刊>International journal of crashworthiness >Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity
【24h】

Analytical, experimental and numerical study of a graded honeycomb structure under in-plane impact load with low velocity

机译:低速面内冲击载荷作用下梯度蜂窝结构的分析,实验和数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

Given the significance of energy absorption in various industries, light shock absorbers such as honeycomb structure under in-plane and out-of-plane loads have been in the core of attention. The purpose of this research is the analyses of graded honeycomb structure (GHS) behaviour under in-plane impact loading and its optimisation. Primarily, analytical equations for plateau stress and specific energy are represented, taking power hardening model (PHM) and elastic-perfectly plastic model (EPPM) into consideration. For the validation and comparison of acquired analytical equations, the energy absorption of a GHS made of five different aluminium grades is simulated in ABAQUS/CAE. In order to validate the numerical simulation method in ABAQUS, an experimental test has been conducted as the falling a weight with low velocity on a GHS. Numerical results retain an acceptable accordance with experimental ones with a 5.4% occurred error of reaction force. For a structure with a specific kinetic energy, the stress-strain diagram is achieved and compared with the analytical equations obtained. The maximum difference between the numerical and analytical plateau stresses for PHM is 10.58%. However, this value has been measured to be 38.78% for EPPM. In addition, the numerical value of absorbed energy is compared to that of analytical method for two material models. The maximum difference between the numerical and analytical absorbed energies for PHM model is 6.4%, while it retains the value of 48.08% for EPPM. Based on the conducted comparisons, the numerical and analytical results based on PHM are more congruent than EPPM results. Applying sequential quadratic programming method and genetic algorithm, the ratio of structure mass to the absorbed energy is minimised. According to the optimisation results, the structure capacity of absorbing energy increases by 18% compared to the primary model.
机译:考虑到能量吸收在各个行业中的重要性,轻型减震器(例如在平面内和平面外载荷下的蜂窝结构)已成为关注的焦点。这项研究的目的是分析平面内冲击载荷作用下的梯度蜂窝结构(GHS)行为及其优化。首先,考虑了功率硬化模型(PHM)和弹性完美塑性模型(EPPM),给出了高原应力和比能的解析方程。为了验证和比较所获得的分析方程式,在ABAQUS / CAE中模拟了由五种不同等级的铝制成的GHS的能量吸收。为了验证ABAQUS中的数值模拟方法,已进行了一项实验测试,即在GHS上以低速下落重物。数值结果保持与实验结果一致的可接受值,反作用力发生误差为5.4%。对于具有特定动能的结构,将获得应力-应变图,并将其与获得的解析方程进行比较。 PHM的平台应力和分析平台应力之间的最大差为10.58%。但是,对于EPPM,该值测得为38.78%。另外,对于两种材料模型,将吸收能量的数值与分析方法的数值进行比较。 PHM模型的数值和分析吸收能量之间的最大差为6.4%,而EPPM的数值保持为48.08%。根据进行的比较,基于PHM的数值和分析结果比EPPM的结果更加一致。应用顺序二次规划法和遗传算法,使结构质量与吸收能之比最小。根据优化结果,与原始模型相比,吸收能量的结构容量增加了18%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号