首页> 外文期刊>International Journal of Coal Geology >The effect of CO_2 on the geomechanical and permeability behaviour of brown coal: Implications for coal seam CO_2 sequestration
【24h】

The effect of CO_2 on the geomechanical and permeability behaviour of brown coal: Implications for coal seam CO_2 sequestration

机译:CO_2对褐煤的地质力学和渗透性行为的影响:对煤层CO_2固存的意义

获取原文
获取原文并翻译 | 示例
           

摘要

Theory from fracture mechanics and thermodynamics coupled with the results of experimental studies provides evidence to suggest that the adsorption of carbon dioxide on coal causes a decrease in the coal strength. Coal weakening by the introduction of CO_2 to a coal seam may induce fracturing, causing a permeability increase under in situ conditions. Such effects present significant implications for proposals regarding the storage of CO_2 in coal seams. A uniaxial and triaxial laboratory study was carried out to explore the effects of the adsorption of CO_2 on the compressive strength and permeability of southeast Australian brown coal. Comparison of the stress-strain response of air-saturated and CO_2-saturated specimens revealed a compressive strength decrease in the order of 13 percent and an elastic modulus decrease of about 26 percent for the uniaxial testing, but no significant strength or elastic modulus decrease for the triaxial testing. The absence of an adsorptive effect on the mechanical behaviour of the triaxial specimens may have been due to an insufficient saturation period under simulated ground conditions, or due to mechanical variability in the brown coal test specimens, however, further testing is required to reveal the reason for the apparent negligible strength reduction with CO_2 adsoiption at the higher confinement. Carbon dioxide outflow measurements during the stress-strain process demonstrated an initial permeability decrease with pore closure, followed by a significant increase in specimen permeability with fracturing. Issues that require consideration in the application of these results to coal seam CO_2 sequestration include: whether the expected regional and localised in situ stresses are sufficient to initiate fracturing with adsorptive weakening; how coal properties (e.g. rank, moisture content) are likely to affect the geomechanical influence of CO_2 adsoiption, and the expected magnitude of the proposed fracture related permeability increase.
机译:来自断裂力学和热力学的理论以及实验研究的结果提供了证据,表明二氧化碳在煤上的吸附会导致煤强度降低。通过将CO_2引入煤层而使煤变弱可能导致压裂,从而在原位条件下导致渗透率增加。这种影响对有关煤层中CO_2储存的建议具有重大意义。进行了单轴和三轴实验室研究,以探讨CO_2的吸附对澳大利亚东南部褐煤的抗压强度和渗透率的影响。比较空气饱和样品和CO_2饱和样品的应力应变响应,发现单轴试验的抗压强度降低了13%左右,弹性模量降低了约26%,但是对于单轴试验,没有明显的强度或弹性模量降低三轴测试。对三轴试样的机械性能没有吸附作用的原因可能是由于在模拟地面条件下的饱和时间不足,或者由于褐煤试样的机械变异性所致,但是,需要进行进一步的试验以揭示原因在较高的限制条件下,由于CO_2吸附而导致的强度下降明显可忽略不计。应力应变过程中的二氧化碳流出量测量结果表明,随着孔隙的闭合,初始渗透率降低,然后随着压裂,样品渗透率显着增加。在将这些结果应用到煤层CO_2固存中时需要考虑的问题包括:预期的区域性和局部性原位应力是否足以引发具有吸附性减弱作用的压裂;煤的性质(例如等级,水分含量)如何影响CO_2吸附的地质力学影响,以及与裂缝相关的渗透率的预期幅度增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号