首页> 外文期刊>International journal of aerospace engineering >A Novel Classification Method for Flutter Signals Based on the CNN and STFT
【24h】

A Novel Classification Method for Flutter Signals Based on the CNN and STFT

机译:基于CNN和STFT的颤振信号分类新方法

获取原文
获取原文并翻译 | 示例
       

摘要

Necessary model calculation simplifications, uncertainty in actual wind tunnel test, and data acquisition system error altogether lead to error between a set of actual experimental results and a set of theoretical design results; wind tunnel test flutter data can be utilized to feedback this error. In this study, a signal processing method was established to use the structural response signals from an aeroelastic model to classify flutter signals via deep learning algorithm. This novel flutter signal processing and classification method works by combining a convolutional neural network (CNN) with time-frequency analysis. Flutter characteristics are revealed in both time and frequency domains, which are harmonic or divergent in the time series; the flutter model energy is singular and significantly increases in the frequency view, so the features of the time-frequency diagram can be extracted from the dataset-trained CNN model. As the foundation of the subsequent deep learning algorithm, the datasets are placed into a collection of time-frequency diagrams calculated by short-time Fourier transform (STFT) and labeled with two artificial states, flutter or no flutter, depending on the source of the signal measured from a wind tunnel test on the aeroelastic model. After preprocessing, a cross-validation schedule is implemented to update (and optimize) CNN parameters though the trained dataset. The trained models were compared against test datasets to validate their reliability and robustness. Our results indicate that the accuracy rate of test datasets reaches 90%. The trained models can effectively and automatically distinguish whether or not there is flutter in the measured signals.
机译:必要的模型计算简化,实际风洞测试的不确定性以及数据采集系统的误差,完全导致了一组实际实验结果与一组理论设计结果之间的误差;风洞测试颤振数据可用于反馈此错误。在这项研究中,建立了一种信号处理方法,以利用来自气动弹性模型的结构响应信号通过深度学习算法对颤振信号进行分类。这种新颖的颤振信号处理和分类方法通过将卷积神经网络(CNN)与时频分析相结合而起作用。在时域和频域都显示出颤动特性,它们在时间序列中是谐波或发散的。颤振模型的能量奇异并且在频率视图中显着增加,因此可以从数据集训练的CNN模型中提取时频图的特征。作为后续深度学习算法的基础,数据集被放入通过短时傅立叶变换(STFT)计算的时频图集合中,并根据波动的来源或无波动的两种人工状态进行标记。气动弹性模型上的风洞测试测得的信号。在预处理之后,实施交叉验证计划,以通过训练后的数据集更新(和优化)CNN参数。将经过训练的模型与测试数据集进行比较,以验证其可靠性和鲁棒性。我们的结果表明测试数据集的准确率达到90%。经过训练的模型可以有效,自动地区分测量信号中是否存在抖动。

著录项

  • 来源
    《International journal of aerospace engineering》 |2019年第2期|9375437.1-9375437.8|共8页
  • 作者单位

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710072, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Power & Energy, Xian 710072, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号