...
首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Atomic-scale finite-element model of tension in nanoscale thin film
【24h】

Atomic-scale finite-element model of tension in nanoscale thin film

机译:纳米薄膜中张力的原子尺度有限元模型

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a 2D atomic-scale finite-element model of tension in nanoscale thin film is developed in which Morse’s potential energy function is used to model the interactive forces between atoms. The model is fed into the finite-element package LS-DYNA and both a single integration point and an explicit solution method are used for solving the tension process rapidly to investigate the size effect of different film thicknesses and the effect of different atomic vacancy ratios on nanoscale thin film under tension. The results show that since the applied displacement is exerted at both ends for different thickness of a perfect crystal, a neutral line is formed at the middle of the material. The material slides along the easiest slip direction to cause a “necking” feature on both sides. The stress initially increases with the gradual increase of strain and thicker film shows a larger tensile stress. After the film experiences the peak stress, the stress then decreases with the gradual increase of strain. While the applied displacement is applied at both ends for different vacancies, a neutral line is formed at the middle of material, but this is not apparent due to the random scattered vacancies. The material slides along the easiest slip direction from left to right, and the stress concentration areas near the constrained ends form “necking” features. Stresses are not zero at zero strain. Tension tests for different vacancy ratios show different maximum stresses. Film with a larger vacancy ratio shows a lower stress at the same strain. As the vacancy ratio of the film under tension increases, the strength and elastic modulus reduces.
机译:本文建立了二维纳米尺度薄膜张力的原子尺度有限元模型,其中使用莫尔斯的势能函数对原子之间的相互作用力进行建模。该模型被输入到有限元软件包LS-DYNA中,并且使用单个积分点和显式求解方法来快速求解张力过程,以研究不同膜厚度的尺寸效应以及不同原子空位比对薄膜的影响。张力下的纳米级薄膜。结果表明,由于不同厚度的完美晶体的两端都施加了位移,因此在材料的中间形成了中性线。材料沿最容易的滑动方向滑动,从而在两侧产生“颈缩”特征。应力最初随着应变的逐渐增加而增加,并且较厚的薄膜显示出较大的拉伸应力。薄膜经历峰值应力后,应力会随着应变的逐渐增加而降低。虽然对不同的空位在两端施加了施加的位移,但是在材料的中间形成了中性线,但是由于随机分散的空位,这并不明显。材料沿着最容易的滑动方向从左向右滑动,受约束端附近的应力集中区域形成“颈缩”特征。应力在零应变下不为零。不同空位比的拉伸试验显示出不同的最大应力。空孔率大的薄膜在相同应变下显示出较低的应力。随着张力下薄膜的空位率增加,强度和弹性模量降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号