首页> 外文期刊>The International Journal of Advanced Manufacturing Technology >Prediction and experimental validation of micro-milling cutting forces of AISI H13 steel at hardness between 35 and 60 HRC
【24h】

Prediction and experimental validation of micro-milling cutting forces of AISI H13 steel at hardness between 35 and 60 HRC

机译:AISI H13钢在35至60 HRC硬度下的微铣削切削力的预测和实验验证

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents prediction and validation of micro-milling cutting forces of AISI H13 steel at hardnesses between 35 and 60 HRC. The cutting forces are predicted based on an approach considering the full kinematics of the cutting tool including the run-out effect, effects of the cutting velocity and tool geometry, ploughing and chip formation phenomena and the hardness of the AISI H13 steel. A plane strain dynamic thermo-mechanical finite element (FE) model of orthogonal cutting is used to predict the cutting forces where the geometry of the cutting tool edge is modelled based on scanning electron microscope measurements. A constitutive elastic–plastic isotropic material model describing the relationship between stresses, strains, strain rates and hardnesses is modelled and implemented into ABAQUS/Explicit FE code by the user-defined subroutine VUMAT. Finite element analyses (FEA) are employed to obtain the relationship between cutting forces, uncut chip thickness, cutting velocity and material hardness. Numerous FEA are performed at different uncut chip thicknesses (0–20 μm), cutting velocities (104.7–4,723 mm/s) and hardnesses (35–60 HRC) using the FE model of orthogonal cutting. The full kinematics of the cutting tool including the run-out effect and the FE-predicted cutting forces are incorporated to predict the micro-milling cutting forces. The predicted micro-milling cutting forces have been experimentally validated at hardness of 43.2 HRC at different feed rates and spindle speeds. The result showed that the cutting forces and cutting temperatures increase by increasing the hardness of the AISI H13 while the stability limits of the process decrease by increasing the hardness.
机译:本文介绍了AISI H13钢在35至60 HRC硬度下的微铣削切削力的预测和验证。预测切削力的方法是考虑切削工具的完整运动学,包括跳动效应,切削速度和切削工具几何形状的影响,犁削和切屑形成现象以及AISI H13钢的硬度。正交切削的平面应变动态热机械有限元(FE)模型用于预测切削力,其中基于扫描电子显微镜的测量结果对切削刃的几何形状进行建模。描述了应力,应变,应变率和硬度之间关系的本构弹塑性各向同性材料模型已建模,并通过用户定义的子例程VUMAT实施到ABAQUS / Explicit FE代码中。有限元分析(FEA)用于获得切削力,未切削切屑厚度,切削速度和材料硬度之间的关系。使用正交切削的FE模型,可以在不同的未切削切屑厚度(0–20μm),切削速度(104.7–4,723 mm / s)和硬度(35–60 HRC)下执行多种FEA。包括跳动效果和有限元预测的切削力在内的切削刀具的完整运动学特性可以用来预测微铣削切削力。预测的微铣削切削力已在不同进给速率和主轴转速下以43.2 HRC的硬度进行了实验验证。结果表明,通过提高AISI H13的硬度可以提高切削力和切削温度,而通过提高硬度可以降低工艺的稳定性极限。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号