首页> 外文期刊>International Communications in Heat and Mass Transfer >Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface
【24h】

Numerical study for melting heat in dissipative flow of hybrid nanofluid over a variable thicked surface

机译:可变厚表面杂交纳米流体耗散流动熔融热量的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

This investigation is carried out to examine stagnation point flow of hybrid nanofluid (SWCNTs + Ag + Gasoline oil) over a stretched sheet of variable thickness. The hybrid nanomaterials are acknowledged more suitable than ordinary nanoliquids. It is no doubt due to combined features of two or more nanoparticles in the hybrid nanomaterial. The idea is useful for enhancement of the properties of resultant nanomaterials better than the nanoliquids consisting of one nanoparticle. Viscous dissipation and melting effect are taken into consideration for heat transport characteristics. Adequate transformations are employed for reduction of PDEs (expressions) into ODEs. These ODEs are then converted into system of first order in order to solve by bvp4c (shooting method). Velocity, skin friction coefficient, Nusselt number and temperature are examined graphically for influential parameters. Comparison of hybrid nanofluid (SWCNTs + Ag + Gasoline oil) with nanofluid (SWCNTs + Gasoline oil) and basefluid (Gasoline oil) is also presented graphically. Velocity of fluid enhances via rise in nanoparticle volume fraction for single-walled CNTs, nanoparticle volume fraction for Ag, velocity ratio, wall thickness and melting parameters. Reduction in temperature of fluid occurs with higher Eckert number, nanoparticle volume fraction for CNTs, nanoparticle volume fraction for Ag and melting parameter. Higher velocity ratio parameter controls the skin friction coefficient. Nusselt number rises with an increment in nanoparticle volume fraction for CNTs, velocity ratio parameter and nanoparticle volume fraction for Ag. Moreover during comparative study better performance is noticed for hybrid nanofluid (SWCNTs + Ag + Gasoline oil) over nanofluid (SWCNTs + Gasoline oil) and basefluid (Gasoline oil).
机译:进行该研究,以在拉伸的可变厚度上检查杂化纳米流体(SWCNT + Ag +汽油油)的停滞点流动。杂交纳米材料被确认比普通纳米喹氢盐更合适。毫无疑问,由于杂交纳米材料中的两个或更多个纳米颗粒的组合特征。这些思想对于提高结果纳米材料的性质比由一个纳米粒子组成的纳米喹钛体的增强。考虑到热传输特性,考虑了粘性耗散和熔化效果。采用足够的转化用于将PDES(表达)还原为ODES。然后将这些杂散转换为首次订单系统,以便通过BVP4C(拍摄方法)解决。以图形方式检查速度,皮肤摩擦系数,露珠数和温度,以实现有影响的参数。杂交纳米流体(SWCNT + Ag +汽油油)与纳米流体(SWCNTs +汽油油)和基础氟(汽油油)的比较也是图形的。流体速度通过纳米颗粒体积分数升高而增强单壁CNT,纳米颗粒体积分数,用于Ag,速度比,壁厚和熔化参数。液体温度的降低发生,具有较高的Eckert数,CNT的纳米粒子体积分数,用于Ag和熔融参数的纳米颗粒体积分数。较高的速度比参数控制皮肤摩擦系数。对于Ag的CNT,速度比参数和纳米颗粒体积级分,纳米粒子体积分数增加,纳米粒子体积分数增加。此外,在比较研究期间,将含有纳米流体(SWCNT +汽油油)和碱(汽油油)的杂种纳米流体(SWCNTs + Ag +汽油油)对更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号