...
首页> 外文期刊>International Communications in Heat and Mass Transfer >Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu_2O-water nanofluid: An experimental study
【24h】

Heat transfer characteristics of impinging jet on a hot surface with constant heat flux using Cu_2O-water nanofluid: An experimental study

机译:Cu_2O-水纳米流体在恒定热通量的热表面上撞击射流的传热特性:实验研究

获取原文
获取原文并翻译 | 示例
           

摘要

The experimental investigations are carried out on a circular nanofluid jet impingement for cooling an aluminum disk with constant heat flux. The study is performed to understand the effects of different factors such as Reynolds number and nanoparticle concentration on the fluid flow and characteristics of heat transfer. The target surface has a circular shape and is kept at constant heat flux with the value of 1414.71 W/m2. The copper oxide-nanoparticle concentrations are changed from 0.03 to 0.07 wt%. The experimental results show that the Cu_2O nanofluid increases the heat transfer efficiency of the impinging jet cooling system. Compared to the case of using the base fluid, the nanofluid increases the convective heat transfer by 45% at 0.07 wt% concentration at Reynolds number of 7330. The center of the target surface, i.e. the stagnation zone, has the highest turbulence intensity because of impinging of the fluid flow on the surface center, while the endpoint of the target surface has the minimum turbulence intensity. Indeed, the turbulence intensity decreases along the radial direction, which augments the effect of employing the nanofluid because the heat transfer due to the turbulence diminishes and merit of using the nanofluid enhances.
机译:对圆形纳米流体射流冲击进行实验研究,以恒定的热通量冷却铝盘。进行该研究是为了了解不同因素(例如雷诺数和纳米颗粒浓度)对流体流动和传热特性的影响。目标表面为圆形,并保持恒定的热通量,其值为1414.71 W / m2。氧化铜-纳米颗粒的浓度从0.03重量%改变为0.07重量%。实验结果表明,Cu_2O纳米流体提高了射流冷却系统的传热效率。与使用基础流体的情况相比,纳米流体在7030的雷诺数下以0.07 wt%的浓度将对流传热增加了45%。目标表面的中心(即停滞区)具有最高的湍流强度,因为流体流撞击表面中心,而目标表面的端点具有最小的湍流强度。实际上,湍流强度沿径向方向减小,这增加了使用纳米流体的效果,因为由于湍流引起的热传递减小并且使用纳米流体的优点增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号