首页> 外文期刊>International communications in heat and mass transfer >Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel
【24h】

Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel

机译:微通道中水性石墨烯纳米血小板(GNP)纳米流体的流体和传热特性

获取原文
获取原文并翻译 | 示例
           

摘要

In the present work, thermo-physical properties of aqueous Graphene Nanoplatelet (GNP) at various mass concentrations of GNPs was experimentally measured. An experimental investigation was conducted to quantify the heat transfer coefficient, friction factor, pressure drop value, pumping power and thermo-hydraulic performance index of the nanofluid within a microchannel at various heat flux and Reynolds number. Results showed that GNP/water nanofluid can plausibly enhance the heat transfer coefficient and the Nusselt number by similar to 80%. In addition, a small increase in the friction factor and the pressure drop value was seen, which was attributed to the augmentation in the friction forces. The maximum increase in the pressure drop was 18.3% recorded at the highest Reynolds number and the highest mass concentration of the nanofluid. Also, despite the augmentation in the pressure drop value, the thermal performance of the system increased by 76% showing the great potential of the GNP/water nanofluid cooling and/or heating applications despite similar to 20% augmentation in the pumping power at Reynolds number 1376. The enhancement in the thermal performance of the system was attributed to the thermophoresis effect, Brownian motion and the enhancement in the thermal conductivity of the nanofluid due to the presence of the GNP nanoplatelets.
机译:在本工作中,通过实验测量了在各种质量浓度的GNP下,石墨烯纳米血小板水溶液(GNP)的热物理性质。进行了实验研究,以量化在不同热通量和雷诺数下微通道内纳米流体的传热系数,摩擦系数,压降值,泵浦功率和热工性能指标。结果表明,GNP /水纳米流体可以合理地将传热系数和Nusselt值提高80%。另外,观察到摩擦系数和压降值略有增加,这归因于摩擦力的增加。在最高雷诺数和最高纳米流体质量浓度下记录到的最大压降增加为18.3%。此外,尽管压降值有所增加,但系统的热性能仍提高了76%,显示出GNP /水纳米流体冷却和/或加热应用的巨大潜力,尽管雷诺数下的泵浦功率增加了20% > 1376.系统热性能的提高归因于热泳效应,布朗运动以及由于GNP纳米片的存在而使纳米流体的热导率提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号