...
首页> 外文期刊>IEEE Transactions on Intelligent Transportation Systems >Sensor Location Strategy and Scaling Rate Inference for Origin-Destination Demand Estimation
【24h】

Sensor Location Strategy and Scaling Rate Inference for Origin-Destination Demand Estimation

机译:传感器定位策略和缩放率推论原始目的地需求估算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The goal of sample-data-based origin-destination (O-D) demand estimation is to aggregate the location data into the traffic network. Inevitably, the scaling rate, which expands the estimated O-D demands to the population level, should be generated. In this paper, a two-stage optimization model is explored for determining the sensor location and stochastic scaling rate. In the first stage, a sensor deployment model identifies the optimal sensor location strategy by minimizing the variability of the scaling rate under a budget constraint. In the second stage, a Bayesian-based scaling rate inference model leverages the prior information and the data that were observed at the identified sensor locations to derive the stochastic scaling rate. The Bayesian-based scaling rate inference model is a bilevel program, which seeks the maximum a posteriori (MAP) scaling rate conditioned by the observed link flows in the upper level and optimizes the stochastic user equilibrium (SUE) in the lower level. To reflect the interactive relationships between the sensor location and the stochastic scaling rate inference, an integrating model is built. A sequential identifying sensor location algorithm that avoids matrix inversions was proposed to solve the sensor deployment model, and an iterative solution algorithm was developed to solve the Bayesian-based scaling rate inference model. The results from numerical experiments demonstrate that the sensor deployment model could provide the most reliable scheme of sensor locations, thereby contributing to the reliable estimation of the stochastic scaling rate. The results also demonstrate that both the endogenous information (prior information on the scaling rate) and exogenous factors (link flows) can facilitate a more accurate scaling rate inference.
机译:基于样本数据的原点 - 目的地(O-D)需求估计的目标是将位置数据聚合到交通网络中。不可避免地,应生成扩展估计的O-D对人口级别的缩放率。在本文中,探索了一种用于确定传感器位置和随机缩放速率的两级优化模型。在第一阶段,传感器部署模型通过最小化预算约束下的缩放率的可变性来识别最佳传感器位置策略。在第二阶段,基于贝叶斯的缩放速率推断模型利用了先前的信息和在所识别的传感器位置观察到的数据来导出随机缩放速率。基于贝叶斯的缩放速率推断模型是一种彼得利程序,它能够在上层中的观察链路流程中的最大后验(MAP)缩放速率,并优化较低级别的随机用户平衡(SUE)。为了反映传感器位置与随机缩放速率推断之间的交互式关系,构建了集成模型。提出了一种顺序识别传感器定位算法,避免了矩阵逆转,以解决传感器部署模型,开发了一种迭代解决方案算法来解决基于贝叶斯的缩放速率推断模型。来自数值实验的结果表明传感器部署模型可以提供传感器位置最可靠的方案,从而有助于随机缩放率的可靠估计。结果还证明了内源性信息(关于缩放率的先前信息)和外源性因素(链路流量)可以促进更准确的缩放速率推理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号