首页> 外文期刊>Integrative and Comparative Biology >The physiology and biomechanics of avian flight at high altitude
【24h】

The physiology and biomechanics of avian flight at high altitude

机译:鸟类在高空飞行的生理和生物力学

获取原文
获取原文并翻译 | 示例
       

摘要

Many birds fly at high altitude, either during long-distance flights or by virtue of residence in high-elevation habitats. Among the many environmental features that vary systematically with altitude, five have significant consequences for avian flight performance: ambient wind speeds, air temperature, humidity, oxygen availability, and air density. During migratory flights, birds select flight altitudes that minimize energy expenditure via selection of advantageous tail- and cross-winds. Oxygen partial pressure decreases substantially to as little as 26% of sea-level values for the highest altitudes at which birds migrate, whereas many taxa reside above 3000 meters in hypoxic air. Birds exhibit numerous adaptations in pulmonary, cardiovascular, and muscular systems to alleviate such hypoxia. The systematic decrease in air density with altitude can lead to a benefit for forward flight through reduced drag but imposes an increased aerodynamic demand for hovering by degrading lift production and simultaneously elevating the induced power requirements of flight. This effect has been well-studied in the hovering flight of hummingbirds, which occur throughout high-elevation habitats in the western hemisphere. Phylogenetically controlled studies have shown that hummingbirds compensate morphologically for such hypodense air through relative increases in wing size, and kinematically via increased stroke amplitude during the wingbeat. Such compensatory mechanisms result in fairly constant power requirements for hovering at different elevations, but decrease the margin of excess power available for other flight behaviors.
机译:许多鸟在长途飞行中或由于居住在高海拔栖息地中而在高空飞行。在随海拔高度而系统地变化的许多环境特征中,有五个对鸟类的飞行性能有重大影响:环境风速,空气温度,湿度,氧气供应和空气密度。在候补飞行中,鸟类通过选择有利的逆风和侧风来选择能使能源消耗最小化的飞行高度。对于鸟类迁徙的最高海拔,氧气分压会大幅降低至海平面值的26%,而许多类群居住在低氧空气中的3000米以上。鸟类在肺,心血管和肌肉系统中表现出多种适应能力,可以缓解这种缺氧。随着高度的升高,空气密度的系统性下降可通过减小阻力来使前向飞行受益,但通过降低升力的产生并同时提高飞行的感应功率要求,对悬停的空气动力学需求增加。在蜂鸟的盘旋飞行中已经对这种效应进行了充分研究,这种现象发生在西半球的高海拔栖息地中。系统发育控制研究表明,蜂鸟通过机翼尺寸的相对增加,并通过机翼搏动过程中冲程幅度的增加,从运动学上补偿了这种低密度的空气。这样的补偿机制导致在不同高度悬停时需要相当恒定的功率需求,但会减少可用于其他飞行行为的多余功率的余量。

著录项

  • 来源
    《Integrative and Comparative Biology》 |2006年第1期|62-71|共10页
  • 作者单位

    California Institute of Technology Mail Code 138-78 1200 East California Blvd. Pasadena California 91125;

    Department of Integrative Biology University of California Berkeley California 94720 and Smithsonian Tropical Research Institute P.O. Box 2072 Balboa Republic of Panama;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号