...
首页> 外文期刊>IEEE Transactions on Instrumentation and Measurement >Complex Field Fault Modeling-Based Optimal Frequency Selection in Linear Analog Circuit Fault Diagnosis
【24h】

Complex Field Fault Modeling-Based Optimal Frequency Selection in Linear Analog Circuit Fault Diagnosis

机译:线性模拟电路故障诊断中基于复杂现场故障建模的最优频率选择

获取原文
获取原文并翻译 | 示例
           

摘要

Owing to the lack of feasible fault modeling method, hard (open and short) faults, and discretized parametric faults are still the mostly used fault models. These models cannot characterize all soft (parameter shifting) faults because that the parameter of analog element be of continuity character. To address this concern, a complex field fault modeling method is presented first. If fault happens to passive element $x_{i}$ in linear analog circuit, the real $(U_{r})$ and imaginary $(U_{!j})$ parts of faulty voltage phasor $mathop{Ukern0pt}^{!!!circ}(mathop{Ukern0pt}^{!!!circ}=U_{r}+j U_{!j}$) must satisfy binary quadratic function $F_{i}(U_{r},U_{!j})=0$, which is independent from the value of element $x_{i}$ and uniquely determined by its location and the nominal circuit under test. Hence, the binary quadratic function can model any continuous parameter shifting (soft) or hard fault. Second, to avoid calculating the explicit expression of binary quadratic function, a simulation-based method is given to obtain the locus of the change in the function $F_{z}$ in the complex plane. Besides, the nominal (fault-free) point, the loci determined by the binary quadratic functions might intersect with each other. It is referred to as aliasing problem in this paper. This problem can be solved by adjusting the frequency of the input signal. Therefore, a constraint optimization method is proposed to select optimal test frequencies. The proposed test generation and compression methods, when combined with the- complex field modeling method, can pinpoint much more fault components with less test points and frequencies when compared with the other methods.
机译:由于缺乏可行的故障建模方法,硬(开路和短路)故障以及离散参数故障仍然是最常用的故障模型。这些模型无法表征所有软故障(参数移位),因为模拟元素的参数具有连续性。为了解决这个问题,首先提出了一种复杂的现场故障建模方法。如果线性模拟电路中的无源元件$ x_ {i} $发生故障,则故障相量$ mathop {Ukern0pt} ^ {的实数$(U_ {r})$和虚构的$(U _ {!j})$部分。 !!! circ}(mathop {Ukern0pt} ^ {!!! circ} = U_ {r} + j U _ {!j} $)必须满足二进制二次函数$ F_ {i}(U_ {r},U_ {! j})= 0 $,它与元素$ x_ {i} $的值无关,并且由其位置和被测标称电路唯一地确定。因此,二进制二次函数可以对任何连续的参数移位(软)或硬故障建模。其次,为避免计算二进制二次函数的显式表达式,给出了一种基于仿真的方法来获得复平面中函数$ F_ {z} $的变化轨迹。此外,由二进制二次函数确定的轨迹的标称(无故障)点可能会彼此相交。在本文中将其称为混叠问题。这个问题可以通过调节输入信号的频率来解决。因此,提出了一种约束优化方法来选择最佳测试频率。与其他方法相比,所提出的测试生成和压缩方法与复杂的现场建模方法相结合,可以用更少的测试点和频率来查明更多的故障分量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号