...
首页> 外文期刊>Inorganic Chemistry >Selectivity of the Highly Preorganized Tetradentate Ligand 2,9-Di(pyrid-2-yl)-1,10-phenanthroline for Metal Ions in Aqueous Solution, Including Lanthanide(III) Ions and the Uranyl(VI) Cation
【24h】

Selectivity of the Highly Preorganized Tetradentate Ligand 2,9-Di(pyrid-2-yl)-1,10-phenanthroline for Metal Ions in Aqueous Solution, Including Lanthanide(III) Ions and the Uranyl(VI) Cation

机译:高度预组织的四齿配体2,9-二(吡啶-2-基)-1,10-菲咯啉对水溶液中金属离子的选择性,包​​括镧系离子(III)和铀酰(VI)阳离子

获取原文
获取原文并翻译 | 示例

摘要

Some metal ion complexing properties of DPP (2,9-Di(pyrid-2-nyl)-1,10-phenanthroline) are reported with a variety of Ln(III) (Lanthanide-n(III)) ions and alkali earth metal ions, as well as the uranyl(VI) cation. Thenintense π−π* transitions in the absorption spectra of aqueous solutions of 10−5nM DPP were monitored as a function of pH and metal ion concentration tondetermine formation constants of the alkali-earth metal ions and Ln(III) (Ln =nlanthanide) ions. It was found that log K1(DPP) for the Ln(III) ions has a peaknat Ln(III) = Sm(III) in a plot of log K1 versus 1/r+ (r+ = ionic radius for 8-ncoordination). For Ln(III) ions larger than Sm(III), there is a steady rise in lognK1 from La(III) to Sm(III), while for Ln(III) ions smaller than Sm(III), log K1ndecreases slightly to the smallest Ln(III) ion, Lu(III). This pattern of variation ofnlog K1 with varying size of Ln(III) ion was analyzed using MM (molecularnmechanics) and DFT (density functional theory) calculations. Values of strainnenergy (ΣU) were calculated for the [Ln(DPP)(H2O)5]3+ and [Ln(qpy)(H2O)5]3+ (qpy = quaterpyrdine) complexes of all the Ln(III)nions. The ideal M−N bond lengths used for the Ln(III) ions were the average of those found in the CSD (Cambridge StructuralnDatabase) for the complexes of each of the Ln(III) ions with polypyridyl ligands. Similarly, the ideal M−O bond lengths were those forncomplexes of the Ln(III) ions with coordinated aqua ligands in the CSD. The MM calculations suggested that in a plot of ΣU versusnideal M−N length, a minimum in ΣU occurred at Pm(III), adjacent in the series to Sm(III). The significance of this result is that (1)nMM calculations suggest that a similar metal ion size preference will occur for all polypyridyl-type ligands, including those containingntriazine groups, that are being developed as solvent extractants in the separation of Am(III) and Ln(III) ions in the treatment of nuclearnwaste, and (2) Am(III) is very close in M−N bond lengths to Pm(III), so that an important aspect of the selectivity of polypyridyl typenligands for Am(III) will depend on the above metal ion size-based selectivity. The selectivity patterns of DPP with the alkali-earth metalnions shows a similar preference for Ca(II), which has the most appropriate M−N lengths. The structures of DPP complexes of Zn(II)nand Bi(III), as representative of a small and of a large metal ion respectively, are reported. [Zn(DPP)2](ClO4)2 (triclinic, P1, R = 0.0507)nhas a six-coordinate Zn(II), with each of the two DPP ligands having one noncoordinated pyridyl group appearing to be π-stacked on thencentral aromatic ring of the other DPP ligand. [Bi(DPP)(H2O)2(ClO4)2](ClO4) (triclinic, P1, R = 0.0709) has an eight-coordinate Bi,nwith the coordination sphere composed of the four N donors of the DPP ligand, two coordinated water molecules, and the O donors ofntwo unidentate perchlorates. As is usually the case with Bi(III), there is a gap in the coordination sphere that appears to be the position ofna lone pair of electrons on the other side of the Bi from the DPP ligand. The Bi-L bonds become relatively longer as one moves from thenside of the Bi containg the DPP to the side where the lone pair is thought to be situated. A DFT analysis of [Ln(tpy)(H2O)n]3+ andn[Ln(DPP)(H2O)5]3+ complexes is reported. The structures predicted by DFT are shown to match very well with the literature crystalnstructures for the [Ln(tpy)(H2O)n]3+ with Ln = La and n = 6, and Ln = Luwith n = 5. This then gives one confidence that the structuresnfor the DPP complexes generated by DFT are accurate. The structures generated by DFT for the [Ln(DPP)(H2O)5]3+ complexes arenshown to agree very well with those generated by MM, giving one confidence in the accuracy of the latter. An analysis of the DFT andnMM structures shows the decreasing O--O nonbonded distances as one progresses from La to Lu, with these distances being much lessnthan the sum of the van der Waals radii for the smaller Ln(III) ions. The effect that such short O--O nonbonded distances has onnthermodynamic complex stability and coordination number is then discussed.
机译:报道了DPP(2,9-二(吡啶-2-基)-1,10-菲咯啉)与多种Ln(III)(Lanthanide-n(III))离子和碱土金属的金属离子络合特性离子以及铀酰(VI)阳离子。然后监测10-5nM DPP水溶液吸收光谱中的强烈π-π*跃迁,作为pH和金属离子浓度的函数来确定碱土金属离子和Ln(III)(Ln =镧系元素)离子的形成常数。发现在log K1对1 / r +(r + = 8-n配位的离子半径)的图上,Ln(III)离子的log K1(DPP)具有峰峰值Ln(III)= Sm(III)。对于大于Sm(III)的Ln(III)离子,lognK1从La(III)到Sm(III)稳定上升,而对于小于Sm(III)的Ln(III)离子,log K1n略微下降至最小的Ln(III)离子Lu(III)。使用MM(分子力学)和DFT(密度泛函理论)计算分析了nlog K1随Ln(III)离子大小变化的这种变化模式。计算所有Ln(III)n离子的[Ln(DPP)(H2O)5] 3+和[Ln(qpy)(H2O)5] 3+(qpy =季吡啶)络合物的应变能(ΣU)值。用于Ln(III)离子的理想MN键长度是CSD(剑桥结构数据库)中每个Ln(III)离子与吡啶基配体的络合物的平均值。同样,理想的M-O键长度是那些CSD中具有配位水配体的Ln(III)离子的络合物。 MM计算表明,在ΣU与理想M-N长度的关系图中,ΣU的最小值出现在Pm(III)处,与Sm(III)系列相邻。该结果的重要性在于,(1)nMM计算表明,所有聚吡啶基型配体(包括那些含有三嗪基的配体)都将出现相似的金属离子尺寸偏好,这些配体正在开发中作为溶剂萃取剂分离Am(III)和Ln(III)离子用于处理核废料,以及(2)Am(III)与Pm(III)的MN键长度非常接近,因此,聚吡啶基类型的配体对Am(III)选择性的重要方面将取决于上述基于金属离子尺寸的选择性。具有碱土金属离子的DPP的选择性模式显示了对Ca(II)的相似偏好,Ca(II)具有最合适的MN长度。报道了分别代表小金属离子和大金属离子的Zn(II)n和Bi(III)DPP配合物的结构。 [Zn(DPP)2](ClO4)2(三斜晶系,P1,R = 0.0507)n具有六配位的Zn(II),两个具有一个不配位吡啶基的DPP配体中的每一个似乎在中心上π堆积其他DPP配体的芳环。 [Bi(DPP)(H2O)2(ClO4)2](ClO4)(三斜晶系,P1,R = 0.0709)具有八个坐标的Bi,n的配位球由DPP配体的四个N供体组成,两个水分子和两个不明高氯酸盐的O供体。与Bi(III)的情况一样,配位域中存在一个间隙,似乎是DPP配体中Bi另一侧的一个单独的电子对的位置。当Bi-L键从包含DPP的Bi的那一侧移到认为孤对所在的那一侧时,Bi-L键变得相对更长。报道了[Ln(tpy)(H2O)n] 3+和n [Ln(DPP)(H2O)5] 3+配合物的DFT分析。通过DFT预测的结构显示出与[Ln(tpy)(H2O)n] 3+的晶体结构非常匹配,其中Ln = La且n = 6,Ln = Luwith n =5。然后得出1确信由DFT生成的DPP配合物的结构是准确的。 DFT生成的[Ln(DPP)(H2O)5] 3+配合物的结构与MM生成的结构非常吻合,这给MM的准确性带来了信心。对DFT和nMM结构的分析显示,随着人们从La到Lu的发展,O-O非键合距离逐渐减小,这些距离远小于较小Ln(III)离子的范德华半径之和。然后讨论了这样短的O-O非键距离对热力学复数稳定性和配位数的影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号