首页> 外文期刊>IEEE transactions on industrial informatics >Artificial Intelligence-Driven Mechanism for Edge Computing-Based Industrial Applications
【24h】

Artificial Intelligence-Driven Mechanism for Edge Computing-Based Industrial Applications

机译:基于边缘计算的工业应用中的人工智能驱动机制

获取原文
获取原文并翻译 | 示例
           

摘要

Due to various challenging issues such as, computational complexity and more delay in cloud computing, edge computing has overtaken the conventional process by efficiently and fairly allocating the resources i.e., power and battery lifetime in Internet of things (IoT)-based industrial applications. In the meantime, intelligent and accurate resource management by artificial intelligence (AI) has become the center of attention especially in industrial applications. With the coordination of AI at the edge will remarkably enhance the range and computational speed of IoT-based devices in industries. But the challenging issue in these power hungry, short battery lifetime, and delay-intolerant portable devices is inappropriate and inefficient classical trends of fair resource allotment. Also, it is interpreted through extensive industrial datasets that dynamic wireless channel could not be supported by the typical power saving and battery lifetime techniques, for example, predictive transmission power control (TPC) and baseline. Thus, this paper proposes 1) a forward central dynamic and available approach (FCDAA) by adapting the running time of sensing and transmission processes in IoT-based portable devices; 2) a system-level battery model by evaluating the energy dissipation in IoT devices; and 3) a data reliability model for edge AI-based IoT devices over hybrid TPC and duty-cycle network. Two important cases, for instance, static (i. e., product processing) and dynamic (i. e., vibration and fault diagnosis) are introduced for proper monitoring of industrial platform. Experimental testbed reveals that the proposed FCDAA enhances energy efficiency and battery lifetime at acceptable reliability (similar to 0.95) by appropriately tuning duty cycle and TPC unlike conventional methods.
机译:由于各种挑战性问题(例如计算复杂性和云计算中的更多延迟),边缘计算已通过在基于物联网(IoT)的工业应用中高效且公平地分配资源(即电源和电池寿命)来取代传统流程。同时,特别是在工业应用中,通过人工智能(AI)进行智能,准确的资源管理已成为关注的焦点。借助边缘AI的协调,将显着提高行业中基于IoT的设备的范围和计算速度。但是,在这些耗电,电池寿命短和延迟延迟的便携式设备中,具有挑战性的问题是公平分配资源的不适当且效率低下的经典趋势。而且,通过大量的工业数据集可以解释,典型的节能和电池寿命技术(例如,预测传输功率控制(TPC)和基准)无法支持动态无线信道。因此,本文提出了1)通过适应基于IoT的便携式设备中传感和传输过程的运行时间,提出一种前向中央动态和可用方法(FCDAA); 2)通过评估IoT设备的能耗来建立系统级电池模型; 3)混合TPC和占空比网络上基于边缘AI的物联网设备的数据可靠性模型。引入了两种重要情况,例如静态(即,产品处理)和动态(即,振动和故障诊断)以适当地监视工业平台。实验测试台表明,与传统方法不同,通过适当调整占空比和TPC,建议的FCDAA以可接受的可靠性(类似于0.95)提高了能源效率和电池寿命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号