首页> 外文期刊>Indoor Air >Inverse design of the thermal environment in an airplane cockpit using the adjoint method with the momentum method
【24h】

Inverse design of the thermal environment in an airplane cockpit using the adjoint method with the momentum method

机译:使用伴随方法的飞机驾驶舱中的热环境反向设计

获取原文
获取原文并翻译 | 示例
           

摘要

Currently, the thermal environment in airplane cockpits is unsatisfactory and pilots often complain about a strong draft sensation in the cockpit. It is caused by the unreasonable air supply diffusers design. One of the best approaches to design a better cockpit environment is the adjoint method. The method can simultaneously and efficiently identify the number, size, location, and shape of air supply inlets, and the air supply parameters. However, the real air diffuser needed to design often have grilles, especially in the airplane cockpit, and the current method can only design the inlet as an opening. This study combined the adjoint method with the momentum method to directly identify the optimal air supply diffusers with grilles to create optimal thermal environment in an airplane cockpit (1) under ideal conditions and (2) with realistic constraints. Under the ideal conditions, the resulting design provides an optimal thermal environment for the cockpit, but it might not be feasible in practice. The design with realistic constraints provides acceptable thermal comfort in the cockpit, but it is not optimal. Thus, there is an engineering trade-off between design feasibility and optimization. All in all, the adjoint method with the momentum method can be effectively used to identify real air supply diffusers.
机译:目前,飞机驾驶舱中的热环境是不令人满意的,飞行员经常抱怨驾驶舱中的强烈感觉。它是由不合理的空气供应扩散器设计引起的。设计更好的驾驶舱环境的最佳方法之一是伴随方法。该方法可以同时和有效地识别空气供应入口的数量,尺寸,位置和形状,以及空气供应参数。然而,设计所需的真实空气扩散器通常具有格栅,特别是在飞机驾驶舱内,并且目前的方法只能设计入口作为开口。本研究将伴随方法与动量方法联系在理想条件下,直接识别具有格栅的最佳空气供应扩散器,以在理想条件下在飞机驾驶舱(1)中创造最佳热环境,并具有现实的限制。在理想的条件下,所产生的设计为驾驶舱提供了最佳的热环境,但在实践中可能不可行。具有现实约束的设计在驾驶舱内提供可接受的热舒适性,但它不是最佳的。因此,在设计可行性和优化之间存在工程权衡。总而言之,可以有效地使用具有动量方法的伴随方法来识别真实的空气供应扩散器。

著录项

  • 来源
    《Indoor Air》 |2021年第5期|1614-1624|共11页
  • 作者单位

    School of Energy and Environment Southeast University Nanjing China Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin China School of Mechanical Engineering Purdue University West Lafayette IN USA;

    Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin China;

    Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin China School of Mechanical Engineering Purdue University West Lafayette IN USA;

    Tianjin Key Laboratory of Indoor Air Environmental Quality Control School of Environmental Science and Engineering Tianjin University Tianjin China;

    School of Energy and Environment Southeast University Nanjing China Engineering Research Center of Building Equipment Energy and Environment Ministry of Education Nanjing China;

    School of Mechanical Engineering Purdue University West Lafayette IN USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    adjoint method; cockpit; environmental conditioning systems (ECS); inverse design; momentum method; thermal environment;

    机译:伴随方法;座舱;环境调理系统(ECS);逆设计;动量方法;热环境;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号