首页> 外文期刊>Systems Biology, IET >Flux balance analysis for ethylene formation in genetically engineered saccharomyces cerevisiae
【24h】

Flux balance analysis for ethylene formation in genetically engineered saccharomyces cerevisiae

机译:通量平衡分析基因工程酿酒酵母中乙烯的形成

获取原文
获取原文并翻译 | 示例
       

摘要

Biosynthesis of ethylene (ethene) is mainly performed by plants and some bacteria and fungi, via two distinct metabolic routes. Plants use two steps, starting with S-adenosylmethionine, while the ethylene-forming microbes perform an oxygen dependent reaction using 2-oxoglutarate and arginine. Introduction of these systems into Saccharomyces cerevisiae was studied in silico. The reactions were added to a metabolic network of yeast and flux over the two networks was optimised for maximal ethylene formation. The maximal ethylene yields obtained for the two systems were similar in the range of 7??8 mol ethylene/10 mol glucose. The microbial metabolic network was used for testing different strategies to increase the ethylene formation. It was suggested that supplementation of exogenous proline, using a solely NAD-coupled glutamate dehydrogenase, and using glutamate as the nitrogen source, could increase the ethylene formation. Comparison of these in silico results with published experimental data for yeast expressing the microbial system confirmed an increased ethylene formation when changing nitrogen source from ammonium to glutamate. The theoretical analysis methods indicated a much higher maximal yield per glucose for ethylene than was experimentally observed. However, such high ethylene yields could only be obtained with a concomitant very high respiration (per glucose). Accordingly, when ethylene production was optimised under the additional constraint of restricted respiratory capacity (i.e. limited to experimentally measured values) the theoretical maximal ethylene yield was much lower at 0.2/10 mol glucose, and closer to the experimentally observed values.
机译:乙烯(乙烯)的生物合成主要由植物以及一些细菌和真菌通过两种不同的代谢途径进行。植物使用两个步骤,从S-腺苷甲硫氨酸开始,而形成乙烯的微生物使用2-氧代戊二酸和精氨酸进行氧依赖性反应。在计算机上研究了将这些系统引入酿酒酵母中。将反应添加到酵母的代谢网络中,并优化两个网络上的通量以最大程度地形成乙烯。在7-8-8摩尔乙烯/ 10摩尔葡萄糖的范围内,两个系统获得的最大乙烯产率相似。微生物代谢网络用于测试增加乙烯形成的不同策略。有人提出,仅使用NAD偶联的谷氨酸脱氢酶并使用谷氨酸作为氮源来补充外源脯氨酸可以增加乙烯的形成。将这些计算机模拟结果与已发表的表达微生物系统的酵母实验数据进行比较,证实了当将氮源从铵盐转换为谷氨酸盐时,乙烯形成增加。理论分析方法表明,乙烯的每葡萄糖最大产率比实验观察到的要高得多。然而,仅在伴随非常高的呼吸(每葡萄糖)的情况下才能获得如此高的乙烯收率。因此,当在受限的呼吸能力(即,限制为实验测量值)的附加约束下优化乙烯产量时,理论最大乙烯产率在0.2 / 10mol葡萄糖下要低得多,并且更接近实验观察到的值。

著录项

  • 来源
    《Systems Biology, IET》 |2011年第4期|p.245-251|共7页
  • 作者单位

    Department of Chemical and Biological Engineering ?? Life Sciences, Chalmers University of Technology;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 13:11:36

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号