...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Combining First- and Second-Order Continuity Constraints in Ultrasound Elastography
【24h】

Combining First- and Second-Order Continuity Constraints in Ultrasound Elastography

机译:结合超声弹性显影中的第一和二阶连续性约束

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ultrasound elastography is a prominent noninvasive medical imaging technique that estimates tissue elastic properties to detect abnormalities in an organ. A common approximation to tissue elastic modulus is tissue strain induced after mechanical stimulation. To compute tissue strain, ultrasound radio frequency (RF) data can be processed using energy-based algorithms. These algorithms suffer from ill-posedness to tackle. A continuity constraint along with the data amplitude similarity is imposed to obtain a unique solution to the time-delay estimation (TDE) problem. Existing energy-based methods exploit the first-order spatial derivative of the displacement field to construct a regularizer. This first-order regularization scheme alone is not fully consistent with the mechanics of tissue deformation while perturbed with an external force. As a consequence, state-of-the-art techniques suffer from two crucial drawbacks. First, the strain map is not sufficiently smooth in uniform tissue regions. Second, the edges of the hard or soft inclusions are not well-defined in the image. Herein, we address these issues by formulating a novel regularizer taking both first- and second-order derivatives of the displacement field into account. The second-order constraint, which is the principal novelty of this work, contributes both to background continuity and edge sharpness by suppressing spurious noisy edges and enhancing strong boundaries. We name the proposed technique: Second-Order Ultrasound eLastography (SOUL). Comparative assessment of qualitative and quantitative results shows that SOUL substantially outperforms three recently developed TDE algorithms called Hybrid, GLUE, and MPWC-Net++. SOUL yields 27.72%, 62.56%, and 81.37% improvements of the signal-to-noise ratio (SNR) and 72.35%, 54.03%, and 65.17% improvements of the contrast-to-noise ratio (CNR) over GLUE with data pertaining to simulation, phantom, and in vivo tissue, respectively. The SOUL code can be downloaded from code.sonography.ai.
机译:超声弹性成像是一种突出的非侵入性医学成像技术,估计组织弹性特性以检测器官中异常。对组织弹性模量的常见近似是机械刺激后诱导的组织菌株。为了计算组织应变,可以使用基于能量的算法处理超声射频(RF)数据。这些算法遭受了不良的姿势。施加与数据幅度相似度以及数据幅度相似度的连续性约束,以获得对时滞估计(TDE)问题的唯一解决方案。现有的基于能量的方法利用位移字段的一阶空间导数来构建规范器。该一级正则化方案单独与组织变形的机制完全一致,同时扰乱外力。结果,最先进的技术遭受了两个关键缺点。首先,菌株图在均匀的组织区域中不够平滑。其次,在图像中不定义硬质或软夹杂物的边缘。在此,我们通过制定一个新的规则器来解决这些问题,以考虑位移场的第一和二阶衍生物。二阶约束是通过抑制虚假嘈杂的边缘和增强强边界来贡献背景连续性和边缘清晰度。我们命名所提出的技术:二阶超声弹性成像(灵魂)。定性和定量结果的比较评估表明,灵魂大幅优于三种最近开发的TDE算法,称为混合,胶水和MPWC-Net ++。灵魂产生27.72%,62.56%和81.37%的发出信噪比(SNR)和72.35%,54.03%和65.17%的对比度粘合比(CNR)的改善,有关的数据有所作为分别模拟,幻影和体内组织。灵魂代码可以从Code.Sonography.ai下载。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号