...
首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Reliable computation of roots in analytical waveguide modeling using an interval-newton approach and algorithmic differentiation
【24h】

Reliable computation of roots in analytical waveguide modeling using an interval-newton approach and algorithmic differentiation

机译:使用区间牛顿法和算法微分的解析波导建模中的根可靠计算

获取原文
获取原文并翻译 | 示例

摘要

For the modeling and simulation of wave propagation in geometrically simple waveguides such as plates or rods, one may employ the analytical global matrix method. That is, a certain (global) matrix depending on the two parameters wavenumber and frequency is built. Subsequently, one must calculate all parameter pairs within the domain of interest where the global matrix becomes singular. For this purpose, one could compute all roots of the determinant of the global matrix when the two parameters vary in the given intervals. This requirement to calculate all roots is actually the method's most concerning restriction. Previous approaches are based on so-called mode-tracers, which use the physical phenomenon that solutions, i.e., roots of the determinant of the global matrix, appear in a certain pattern, the waveguide modes, to limit the root-finding algorithm's search space with respect to consecutive solutions. In some cases, these reductions of the search space yield only an incomplete set of solutions, because some roots may be missed as a result of uncertain predictions. Therefore, we propose replacement of the mode-tracer approach with a suitable version of an interval- Newton method. To apply this interval-based method, we extended the interval and derivative computation provided by a numerical computing environment such that corresponding information is also available for Bessel functions used in circular models of acoustic waveguides. We present numerical results for two different scenarios. First, a polymeric cylindrical waveguide is simulated, and second, we show simulation results of a one-sided fluid-loaded plate. For both scenarios, we compare results obtained with the proposed interval-Newton algorithm and commercial software.
机译:为了对在诸如板或棒的几何上简单的波导中的波传播进行建模和仿真,可以采用解析全局矩阵方法。即,建立取决于两个参数波数和频率的特定(全局)矩阵。随后,必须计算全局矩阵变得奇异的目标域内的所有参数对。为此,当两个参数在给定间隔内变化时,可以计算全局矩阵行列式的所有根。计算所有根的这一要求实际上是该方法最相关的限制。先前的方法基于所谓的模式跟踪器,该模式跟踪器使用解决方案(即全局矩阵的行列式的根)以某种模式(波导模式)出现的物理现象来限制根查找算法的搜索空间关于连续解决方案。在某些情况下,搜索空间的这些减少只会产生不完整的解集,因为不确定的预测可能会遗漏某些根。因此,我们建议用适当版本的间隔牛顿法代替模式示踪法。为了应用这种基于间隔的方法,我们扩展了数值计算环境提供的间隔和微分计算,以使相应的信息也可用于声波导圆形模型中的贝塞尔函数。我们给出了两种不同情况的数值结果。首先,对聚合物圆柱波导进行了仿真,其次,我们展示了单侧流体加载板的仿真结果。对于这两种情况,我们都会比较使用建议的间隔牛顿算法和商业软件获得的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号