首页> 外文期刊>IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control >Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study
【24h】

Evaluating the feasibility of acoustic radiation force impulse shear wave elasticity imaging of the uterine cervix with an intracavity array: a simulation study

机译:用腔内阵列评估子宫颈声辐射力脉冲剪切波弹性成像的可行性:模拟研究

获取原文
获取原文并翻译 | 示例
           

摘要

The uterine cervix softens, shortens, and dilates throughout pregnancy in response to progressive disorganization of its layered collagen microstructure. This process is an essential part of normal pregnancy, but premature changes are associated with preterm birth. Clinically, there are no reliable noninvasive methods to objectively measure cervical softening or assess cervical microstructure. The goal of these preliminary studies was to evaluate the feasibility of using an intracavity ultrasound array to generate acoustic radiation force impulse (ARFI) excitations in the uterine cervix through simulation, and to optimize the acoustic radiation force (ARF) excitation for shear wave elasticity imaging (SWEI) of the tissue stiffness. The cervix is a unique soft tissue target for SWEI because it has significantly greater acoustic attenuation (;1; = 1.3 to 2.0 dB??????cm-1??????MHz-1) than other soft tissues, and the pathology being studied tends to lead to an increase in tissue compliance, with healthy cervix being relatively stiff compared with other soft tissues (E Ȥ8; 25 kPa). Additionally, the cervix can only be accessed in vivo using a transvaginal or catheter-based array, which places additional constraints on the excitation focal characteristics that can be used during SWEI. Finite element method (FEM) models of SWEI show that larger-aperture, catheter-based arrays can utilize excitation frequencies up to 7 MHz to generate adequate focal gain up to focal depths 10 to 15 mm deep, with higher frequencies suffering from excessive amounts of near-field acoustic attenuation. Using full-aperture excitations can yield -C;40% increases in ARFI-induced displacements, but also restricts the depth of field of the excitation to -C;0.5 mm, compared with 2 to 6 mm, which limits the range that can be used for shear wave characterization of the tissue. The center-frequency content of the shear wave particle velocity profiles ra- ges from 1.5 to 2.5 kHz, depending on the focal configuration and the stiffness of the material being imaged. Overall, SWEI is possible using catheter-based imaging arrays to generate adequate displacements in cervical tissue for shear wave imaging, although specific considerations must be made when optimizing these arrays for this shear wave imaging application.
机译:子宫颈在其整个妊娠过程中会因其层状胶原微结构的逐渐紊乱而软化,缩短和扩张。此过程是正常怀孕的重要组成部分,但早产与早产有关。临床上,没有可靠的非侵入性方法来客观地测量宫颈软化或评估宫颈微结构。这些初步研究的目的是评估使用腔内超声阵列通过模拟在子宫颈中产生声辐射力脉冲(ARFI)激发的可行性,并优化声波力(ARF)激发以进行剪切波弹性成像(SWEI)的组织刚度。子宫颈是SWEI的独特软组织靶标,因为它具有明显更大的声衰减(; 1; = 1.3至2.0 dB ??? cm -1 ??? MHz < sup>- 1),并且正在研究的病理学趋向于导致组织顺应性增加,健康的子宫颈与其他软组织相比相对较硬(EE8; 25 kPa)。另外,子宫颈只能使用经阴道或基于导管的阵列在体内进入,这对可在SWEI期间使用的激发聚焦特性产生了额外的限制。 SWEI的有限元方法(FEM)模型表明,大口径,基于导管的阵列可以利用高达7 MHz的激发频率来产生足够的聚焦增益,直至深度为10至15 mm的焦深,而较高的频率则受到过量的近场声衰减。使用全孔径激发可以使-C; ARFI引起的位移增加40%,但也将激发的景深限制为-C; 0.5 mm,而将其限制为2至6 mm,这限制了可以用于组织的剪切波表征。剪切波粒子速度分布图的中心频率范围从1.5到2.5 kHz,这取决于焦点配置和被成像材料的刚度。总的来说,SWEI可以使用基于导管的成像阵列为切变波成像在宫颈组织中产生足够的位移,尽管在针对切变波成像应用优化这些阵列时必须特别考虑。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号