首页> 外文期刊>IEEE Transactions on Signal Processing >Equalization Techniques for Distributed Space-Time Block Codes With Amplify-and-Forward Relaying
【24h】

Equalization Techniques for Distributed Space-Time Block Codes With Amplify-and-Forward Relaying

机译:具有放大转发中继的分布式时空分组码均衡技术

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we investigate equalization methods for cooperative diversity schemes over frequency-selective fading channels. Specifically, we consider three equalization schemes proposed originally for conventional space-time block codes (STBC) and extend them to distributed STBC in a cooperative transmission scenario with amplify-and-forward relaying. The distributed STBC equalization schemes are named after their original counterparts as distributed time-reversal (D-TR) STBC, distributed single-carrier (D-SC) STBC, and distributed orthogonal frequency division multiplexed (D-OFDM) STBC. The underlying orthogonality of distributed STBC results in decoupled data streams at the receiver side allowing low-complexity implementations. Without loss of generality, we consider a single-relay scenario where the source-to-relay $Srightarrow R$, relay-to-destination $Rrightarrow D$, and source-to-destination $Srightarrow D$ links experience possibly different channel delay spreads. Under the assumption of perfect power control for the relay terminal and high signal-to-noise ratio (SNR) for the underlying links, our performance analysis demonstrates that D-TR-STBC, D-SC-STBC, and coded D-OFDM-STBC schemes are able to achieve a maximum diversity order of $min(L_{1},L_{3})+L_{2}+2$ where $L_{1}$, $L_{2}$, and $L_{3}$ are the channel memory lengths for $Srightarrow R$, $Srightarrow D$, and $Rrightarrow D$ links, respectively. This illustrates that the minimum of the multipath diversity orders experienced in $Srightarrow R$ and $Rrightarrow D$ links becomes the performance bottleneck for the relaying path. For the case of a nonfading relaying path where line-of-sight propagation is possible in either one of these underlying links, we demonstrate that diversity orders of $L_{1}+L_{2}+2$ and $L_{3}+L_{2}+2$ are achievable assuming nonfading $Srightarrow R$ and $Rrightarrow D$ links, respectively. An extensive Monte Carlo simulation study is presented to corroborate the analytical results and to provide detailed performance comparisons among the three candidate equalization schemes.
机译:在本文中,我们研究了频率选择性衰落信道上合作分集方案的均衡方法。具体来说,我们考虑了最初为常规空时分组码(STBC)提出的三种均衡方案,并在具有放大转发中继的协作传输方案中将它们扩展到分布式STBC。分布式STBC均衡方案以其原始对应名称命名为分布式时间反转(D-TR)STBC,分布式单载波(D-SC)ST​​BC和分布式正交频分复用(D-OFDM)STBC。分布式STBC的基本正交性导致接收器侧的数据流解耦,从而实现了低复杂度的实现。在不失一般性的前提下,我们考虑一种单中继方案,其中源到中继$ Srightarrow R $,中继到目标$ Rrightarrow D $和源到目标$ Srightarrow D $链接可能经历不同的信道延迟点差。在对中继终端进行完美的功率控制并且对基础链路具有高信噪比(SNR)的假设下,我们的性能分析表明,D-TR-STBC,D-SC-STBC和编码D-OFDM- STBC方案能够实现$ min(L_ {1},L_ {3})+ L_ {2} + 2 $的最大分集阶数,其中$ L_ {1} $,$ L_ {2} $和$ L_ {3} $是$ Srightarrow R $,$ Srightarrow D $和$ Rrightarrow D $链接的通道内存长度。这说明$ Srightarrow R $和$ Rrightarrow D $链接中经历的最小多径分集阶数成为中继路径的性能瓶颈。对于中继路径不衰落的情况,在这些基础链路中的任何一个中都可能进行视线传播,我们证明了分集阶次为$ L_ {1} + L_ {2} + 2 $和$ L_ {3}假设分别使用不褪色的$ Srightarrow R $和$ Rrightarrow D $链接,则可以实现+ L_ {2} + 2 $。提出了广泛的蒙特卡洛模拟研究,以证实分析结果并提供三种候选均衡方案之间的详细性能比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号