...
首页> 外文期刊>IEEE Transactions on Signal Processing >Speeding up the Sphere Decoder With $H^{infty }$ and SDP Inspired Lower Bounds
【24h】

Speeding up the Sphere Decoder With $H^{infty }$ and SDP Inspired Lower Bounds

机译:通过$ H ^ {infty} $和SDP启发下界来加快球形解码器的速度

获取原文
获取原文并翻译 | 示例

摘要

It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N3. However, the computational complexity of sphere decoding becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. In this paper, we target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoding algorithm. The search tree is pruned by computing lower bounds on the optimal value of the objective function as the algorithm proceeds to descend down the search tree. We observe a tradeoff between the computational complexity required to compute a lower bound and the size of the pruned tree: the more effort we spend in computing a tight lower bound, the more branches that can be eliminated in the tree. Using ideas from semidefinite program (SDP)-duality theory and Hinfin estimation theory, we propose general frameworks for computing lower bounds on integer least-squares problems. We propose two families of algorithms, one that is appropriate for large problem dimensions and binary modulation, and the other that is appropriate for moderate-size dimensions yet high-order constellations. We then show how in each case these bounds can be efficiently incorporated in the sphere decoding algorithm, often resulting in significant improvement of the expected complexity of solving the ML decoding problem, while maintaining the exact ML-performance.
机译:众所周知,许多数字通信方案中的最大似然(ML)解码都减少了解决整数最小二乘问题的能力,这在最坏的情况下很难解决。另一方面,最近显示,在N维和信噪比(SNR)的较大范围内,球面解码算法可用于查找具有预期复杂度的精确ML解决方案,而该复杂度通常是小于N3。但是,如果SNR太低和/或问题的规模太大,则球解码的计算复杂度将变得令人望而却步。在本文中,我们针对这两种机制,并尝试通过修剪搜索树(超出标准球体解码算法所能完成的工作)来找到更快的算法。当算法继续向下搜索时,通过计算目标函数的最佳值的下限来修剪搜索树。我们观察到在计算下限所需的计算复杂度与修剪后的树的大小之间进行权衡:我们在计算紧密下限上花费的精力越多,可以在树中消除的分支就越多。利用半定程序(SDP)对偶理论和Hinfin估计理论的思想,我们提出了用于计算整数最小二乘问题下界的通用框架。我们提出了两种算法,一种适用于较大的问题维度和二进制调制,另一种适用于中等大小的维度但高阶星座。然后,我们展示了如何在每种情况下将这些范围有效地合并到球体解码算法中,通常可以显着提高解决ML解码问题的预期复杂度,同时保持精确的ML性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号