...
首页> 外文期刊>Signal Processing, IEEE Transactions on >Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure
【24h】

Gaussian Multiresolution Models: Exploiting Sparse Markov and Covariance Structure

机译:高斯多分辨率模型:利用稀疏马尔可夫和协方差结构

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper, we consider the problem of learning Gaussian multiresolution (MR) models in which data are only available at the finest scale, and the coarser, hidden variables serve to capture long-distance dependencies. Tree-structured MR models have limited modeling capabilities, as variables at one scale are forced to be uncorrelated with each other conditioned on other scales. We propose a new class of Gaussian MR models in which variables at each scale have sparse conditional covariance structure conditioned on other scales. Our goal is to learn a tree-structured graphical model connecting variables across scales (which translates into sparsity in inverse covariance), while at the same time learning sparse structure for the conditional covariance (not its inverse) within each scale conditioned on other scales. This model leads to an efficient, new inference algorithm that is similar to multipole methods in computational physics. We demonstrate the modeling and inference advantages of our approach over methods that use MR tree models and single-scale approximation methods that do not use hidden variables.
机译:在本文中,我们考虑了学习高斯多分辨率(MR)模型的问题,在该模型中,数据仅在最佳规模下可用,而较粗的隐藏变量用于捕获长距离依赖项。树形结构的MR模型的建模能力有限,因为在一个尺度上的变量被迫彼此不相关,而在其他尺度上是这样。我们提出了一类新的高斯MR模型,其中每个尺度上的变量都有以其他尺度为条件的稀疏条件协方差结构。我们的目标是学习一个树状结构的图形模型,该模型将跨尺度的变量连接起来(这转化为逆协方差的稀疏性),同时学习以其他尺度为条件的每个尺度内的条件协方差的稀疏结构(而不​​是其逆)。该模型导致一种高效的新推理算法,该算法类似于计算物理学中的多极方法。与使用MR树模型的方法和不使用隐藏变量的单尺度近似方法相比,我们证明了我们的方法在建模和推理方面的优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号