...
首页> 外文期刊>Robotics, IEEE Transactions on >Human–Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators
【24h】

Human–Robot Interaction Control of Rehabilitation Robots With Series Elastic Actuators

机译:带系列弹性执行器的康复机器人的人机交互控制

获取原文
获取原文并翻译 | 示例
           

摘要

Rehabilitation robots, by necessity, have direct physical interaction with humans. Physical interaction affects the controlled variables and may even cause system instability. Thus, human–robot interaction control design is critical in rehabilitation robotics research. This paper presents an interaction control strategy for a gait rehabilitation robot. The robot is driven by a novel compact series elastic actuator, which provides intrinsic compliance and backdrivablility for safe human–robot interaction. The control design is based on the actuator model with consideration of interaction dynamics. It consists mainly of human interaction compensation, friction compensation, and is enhanced with a disturbance observer. Such a control scheme enables the robot to achieve low output impedance when operating in human-in-charge mode and achieve accurate force tracking when operating in force control mode. Due to the direct physical interaction with humans, the controller design must also meet the stability requirement. A theoretical proof is provided to show the guaranteed stability of the closed-loop system under the proposed controller. The proposed design is verified with an ankle robot in walking experiments. The results can be readily extended to other rehabilitation and assistive robots driven with compliant actuators without much difficulty.
机译:康复机器人必须与人类直接互动。物理相互作用会影响受控变量,甚至可能导致系统不稳定。因此,人机交互控制设计在康复机器人研究中至关重要。本文提出了一种步态康复机器人的交互控制策略。该机器人由新颖的紧凑型系列弹性致动器驱动,可提供固有的顺应性和可逆转性,以确保人机交互。控制设计基于执行器模型,并考虑了相互作用动力学。它主要包括人机交互补偿,摩擦补偿,并通过干扰观察器进行了增强。这种控制方案使机器人在负责人模式下操作时可实现低输出阻抗,并在力控制模式下操作时实现准确的力跟踪。由于与人类的直接物理交互,因此控制器的设计还必须满足稳定性要求。提供了理论证明以显示在所提出的控制器下闭环系统的保证稳定性。在步行实验中,该设计方案通过脚踝机器人进行了验证。结果可以很容易地扩展到其他由顺应性致动器驱动的康复和辅助机器人,而不会产生太大的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号