首页> 外文期刊>Nuclear Science, IEEE Transactions on >Irradiation Testing of Ultrasonic Transducers
【24h】

Irradiation Testing of Ultrasonic Transducers

机译:超声波换能器的辐照测试

获取原文
获取原文并翻译 | 示例
           

摘要

Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of numerous parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. To address this need, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least ${10^{21}}~hbox{n/cm}^{2} ({rm E} > 0.1~hbox{MeV})$. This test will be an instrumented lead test; and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. By characterizing magnetostrictive and piezoelectric transducer survivability during irradiation, test results will enable the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acqui- ing the data necessary to demonstrate the performance of ultrasonic transducers.
机译:超声波技术为许多参数的高精度和高分辨率桩内测量提供了潜力,这些参数包括几何形状变化,温度,裂纹​​萌生和扩展,气压和成分以及微结构变化。能源部核能办公室(DOE-NE)的许多计划都在探索超声技术的使用,以提供增强的传感器,用于在辐射测试过程中对桩内仪器进行测量。例如,单个小直径超声波温度计(UT)在候选金属和氧化物燃料中提供温度曲线的能力将为验证新的燃料性能模型提供急需的数据。其他工作包括检测形态变化(例如裂纹萌生和扩展)的超声波技术和评估裂变气体成分和压力的声学技术。由于缺乏在辐射条件下对超声换能器材料的生存能力的现有知识而限制了这些努力。为了满足这一需求,宾夕法尼亚州立大学(PSU)被授予了先进试验堆国家科学用户设施(ATR NSUF)项目,以评估麻省理工学院研究堆(MITR)有望达到的磁致伸缩和压电换能器性能至少 $ {10 ^ {21}}〜hbox {n / cm} ^ {2}的注量({rm E}> 0.1〜hbox {MeV })$ 。该测试将是仪器化的铅测试;实时换能器性能数据将与温度,中子和伽玛通量数据一起收集。通过表征辐照过程中磁致伸缩和压电换能器的生存能力,测试结果将能够开发用于材料和测试反应堆(MTR)的新型耐辐射超声传感器。当前的工作是通过获取证明超声换能器性能所必需的数据,来弥补成熟的桩外超声技术与桩内部署超声传感器之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号