...
首页> 外文期刊>IEEE transactions on neural systems and rehabilitation engineering >Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks
【24h】

Estimating Multiscale Direct Causality Graphs in Neural Spike-Field Networks

机译:估计神经尖峰场网络中的多尺度直接因果图

获取原文
获取原文并翻译 | 示例
           

摘要

Neural representations span various spatiotemporal scales of brain activity, from the spiking activity of single neurons to field activity measuring large-scale networks. The simultaneous analyses of spikes and fields to uncover causal interactions in multiscale networks could help understand neural mechanisms. However, assessing causality within spike-field networks is challenging as spikes are binary-valued with a fast time-scale while fields are continuous-valued with slower time-scales. Current causality measures are largely not applicable to mixed discrete-continuous network activity. Here, in this paper, we develop a novel multiscale causality estimation algorithm for spike-field networks. We construct a likelihood function comprised of point process models for spikes and linear Gaussian models for fields. For spikes, firing rates are modeled as a function of the history of both field signals and binary spike events within the network. For fields, to make their linear models consistent with biophysical findings, we use the history of field signals and the history of the latent log-firing rates of neurons as predictors. To resolve the challenge of estimating the network model parameters in the presence of latent firing rates, we develop a sequential maximum-likelihood parameter estimation procedure that extends to large networks. Once models are estimated, we compute directed information as our measure of multiscale causality and devise two statistical tests to assess its significance. Using extensive simulations, we show that the algorithm can accurately reconstruct the true causality graphs of random spike-field networks. Moreover, the algorithm is robust to the number of connections, connection strengths, or exact topology of the network. This multiscale causality estimation algorithm has important implications for studying neural mechanisms and for future neurotechnology design.
机译:神经表示跨越各种时空尺度的大脑活动,从单个神经元的尖峰活动到测量大规模网络的现场活动。同时分析峰值和场以揭示多尺度网络中的因果相互作用可以帮助理解神经机制。然而,在峰值场网络中评估因果关系具有挑战性,因为峰值以快速的时间尺度进行二进制数值化,而磁场以较低的时间尺度进行连续数值化。当前的因果关系度量在很大程度上不适用于混合离散连续网络活动。在本文中,我们针对尖峰场网络开发了一种新颖的多尺度因果关系估计算法。我们构造了一个似然函数,该函数由尖峰的点过程模型和场的线性高斯模型组成。对于尖峰,将发射速率建模为网络中场信号和二进制尖峰事件的历史的函数。对于场,为了使它们的线性模型与生物物理发现一致,我们使用场信号的历史和神经元的潜在对数发射率的历史作为预测因子。为了解决在潜在触发率存在下估算网络模型参数的挑战,我们开发了一种顺序最大似然参数估算程序,该程序可扩展到大型网络。估算模型后,我们将计算定向信息作为我们对多尺度因果关系的度量,并设计两个统计检验来评估其重要性。使用大量的模拟,我们表明该算法可以准确地重建随机尖峰场网络的真实因果图。而且,该算法对于连接的数量,连接强度或网络的精确拓扑具有鲁棒性。这种多尺度因果关系估计算法对于研究神经机制和未来神经技术设计具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号