...
首页> 外文期刊>IEEE transactions on nanotechnology >Engineering quantum confinement and orbital couplings in laterally coupled vertical quantum dots for spintronic applications
【24h】

Engineering quantum confinement and orbital couplings in laterally coupled vertical quantum dots for spintronic applications

机译:自旋电子学中横向耦合垂直量子点中的工程量子限制和轨道耦合

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We use three-dimensional self-consistent Kohn-Sham's equations coupled with Poisson's equation to investigate the electrical behavior of laterally coupled vertical quantum dots (LCVQD) for spin-qubit operation. The shape and the depth of the central gate are changed in different ways to correlate gate geometry with the coupling between the two quantum dots. Upon comparing LCVQD single-gate and the split-gate structures, we found that the two inherently different designs result in different energy barrier profiles leading to dissimilar wavefunction coupling between the two dots. Finally, we show that the doping concentrations in the layered structure could be optimized for practical two-qubit operation.
机译:我们使用三维自洽Kohn-Sham方程与Poisson方程相结合,以研究自旋量子位操作的横向耦合垂直量子点(LCVQD)的电学行为。中心栅极的形状和深度以不同的方式改变,以使栅极几何形状与两个量子点之间的耦合相关。通过比较LCVQD单栅极结构和分裂栅极结构,我们发现这两个固有的不同设计导致不同的能垒分布,从而导致两个点之间的波函数耦合不同。最后,我们表明,对于实际的两量子位操作,可以优化分层结构中的掺杂浓度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号