首页> 外文期刊>Microwave Theory and Techniques, IEEE Transactions on >A Time-Varying Approach to Circuit Modeling of Plasmonic Nanospheres Using Radial Vector Wave Functions
【24h】

A Time-Varying Approach to Circuit Modeling of Plasmonic Nanospheres Using Radial Vector Wave Functions

机译:径向矢量波函数的时变方法在等离子体纳米球的电路建模中

获取原文
获取原文并翻译 | 示例
           

摘要

Recent research has demonstrated the use of plasmonic nanoparticles (e.g., a silver or a gold nanosphere) as circuit elements. In these metallic nanoparticles, an electromagnetic wave at optical frequencies excites conduction electrons resulting in a plasmon resonance. The derived values of circuit components are based on the observation that the small size of the particle compared to the wavelength leads to lumped-impedance representations under the quasi-static approximation. In this paper, we show that circuit representations based on quasi-static approximations can often result in large errors for typical nanosphere sizes. To remedy this issue, we present a new approach based on time-varying fields, which uses vector wave functions to explicitly derive accurate resonance frequency and impedance expressions for these metallic nanospheres at and around the plasmon resonance. In particular, the proposed approach accurately predicts the dependence of the resonance frequency on the size of the nanoparticle and yields more accurate expressions for the equivalent $L$ and $C$ lumped elements compared to the quasi-static model. The new impedance approach is still compatible with the process of cascading nanoparticles in series and parallel combinations to synthesize more complex nanocircuits. A comparison with Mie and full-wave finite-element simulation results demonstrates that our model provides accurate closed-form expressions, thereby extending the range of the impedance representation to larger radii nanoparticles.
机译:最近的研究表明使用等离子体纳米颗粒(例如,银或金纳米球)作为电路元件。在这些金属纳米粒子中,光频率的电磁波激发传导电子,导致等离子体激元共振。得出的电路组件值基于以下观察结果:在准静态近似下,与波长相比,较小的粒子尺寸会导致集总阻抗表示。在本文中,我们表明基于准静态逼近的电路表示形式通常会导致典型纳米球尺寸的较大误差。为了解决这个问题,我们提出了一种基于时变场的新方法,该方法使用矢量波函数显式导出这些金属纳米球在等离激元共振时及其周围的准确共振频率和阻抗表达式。特别地,所提出的方法准确地预测了共振频率对纳米颗粒尺寸的依赖性,并产生了等效的 $ L $ $ C $ 集总元素。新的阻抗方法仍与串联和并联组合级联纳米颗粒以合成更复杂的纳米电路的过程兼容。与Mie和全波有限元仿真结果的比较表明,我们的模型提供了精确的闭合形式表达式,从而将阻抗表示的范围扩展到了更大的半径纳米粒子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号