...
首页> 外文期刊>IEEE Transactions on Medical Imaging >Nondestructive Detection of Targeted Microbubbles Using Dual-Mode Data and Deep Learning for Real-Time Ultrasound Molecular Imaging
【24h】

Nondestructive Detection of Targeted Microbubbles Using Dual-Mode Data and Deep Learning for Real-Time Ultrasound Molecular Imaging

机译:使用双模数据的无损检测与实时超声分子成像的双模数据和深度学习

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ultrasound molecular imaging (UMI) is enabled by targeted microbubbles (MBs), which are highly reflective ultrasound contrast agents that bind to specific biomarkers. Distinguishing between adherent MBs and background signals can be challenging in vivo. The preferred preclinical technique is differential targeted enhancement (DTE), wherein a strong acoustic pulse is used to destroy MBs to verify their locations. However, DTE intrinsically cannot be used for real-time imaging and may cause undesirable bioeffects. In this work, we propose a simple 4-layer convolutional neural network to nondestructively detect adherent MB signatures. We investigated several types of input data to the network: "anatomy-mode" (fundamental frequency), "contrast-mode" (pulse-inversion harmonic frequency), or both, i.e., "dual-mode", using IQ channel signals, the channel sum, or the channel sum magnitude. Training and evaluation were performed on in vivo mouse tumor data and microvessel phantoms. The dual-mode channel signals yielded optimal performance, achieving a soft Dice coefficient of 0.45 and AUC of 0.91 in two test images. In a volumetric acquisition, the network best detected a breast cancer tumor, resulting in a generalized contrast-to-noise ratio (GCNR) of 0.93 and Kolmogorov-Smirnov statistic (KSS) of 0.86, outperforming both regular contrast mode imaging (GCNR = 0.76, KSS = 0.53) and DTE imaging (GCNR = 0.81, KSS = 0.62). Further development of the methodology is necessary to distinguish free from adherent MBs. These results demonstrate that neural networks can be trained to detect targeted MBs with DTE-like quality using nondestructive dual-mode data, and can be used to facilitate the safe and real-time translation of UMI to clinical applications.
机译:通过靶向微泡(MBS)使能超声分子成像(UMI),其是高度反射的超声造影剂,其与特定的生物标志物结合。区分粘附MBS和背景信号可以在体内具有挑战性。优选的临床前技术是差分靶向增强(DTE),其中使用强声脉冲来破坏MB以验证其位置。然而,DTE本质上不能用于实时成像,并且可能导致不希望的生物效应。在这项工作中,我们提出了一个简单的4层卷积神经网络,以非破坏性地检测粘附的MB签名。我们调查了网络上的几种类型的输入数据:“解剖模式”(基频),“脉冲反转谐波频率”,或两者,即“双模”,使用IQ信道信号,信道总和或通道总幅度。对体内小鼠肿瘤数据和微血管素进行培训和评估。双模通道信号产生最佳性能,在两个测试图像中实现0.45和AUC的软骰子系数。在体积采集中,网络最佳地检测到乳腺癌肿瘤,导致0.93和Kolmogorov-Smirnov统计(KSS)的广义对比度(GCNR)为0.86,优于常规对比模式成像(GCNR = 0.76 ,KSS = 0.53)和DTE成像(GCNR = 0.81,KSS = 0.62)。方法的进一步发展是必要的,以区分免于粘附的MBS。这些结果表明,可以训练神经网络以使用非破坏性双模数据的DTE样质检测目标MB,并且可用于促进UMI的安全和实时翻译UMI至临床应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号