...
首页> 外文期刊>IEEE Transactions on Medical Imaging >Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography
【24h】

Adaptive Gaussian Weighted Laplace Prior Regularization Enables Accurate Morphological Reconstruction in Fluorescence Molecular Tomography

机译:自适应高斯加权拉普拉斯先验正则化在荧光分子层析成像中实现准确的形态重建

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Fluorescence molecular tomography (FMT), as a powerful imaging technique in preclinical research, can offer the three-dimensional distribution of biomarkers by detecting the fluorescently labelled probe noninvasively. However, because of the light scattering effect and the ill-pose of inverse problem, it is challenging to develop an efficient reconstruction method, which can provide accurate location and morphology of the fluorescence distribution. In this research, we proposed a novel adaptive Gaussian weighted Laplace prior (AGWLP) regularization method, which assumed the variance of fluorescence intensity between any two voxels had a non-linear correlation with their Gaussian distance. It utilized an adaptive Gaussian kernel parameter strategy to achieve accurate morphological reconstructions in FMT. To evaluate the performance of the AGWLP method, we conducted numerical simulation and in vivo experiments. The results were compared with fast iterative shrinkage (FIS) thresholding method, split Bregman-resolved TV (SBRTV) regularization method, and Gaussian weighted Laplace prior (GWLP) regularization method. We validated in vivo imaging results against planar fluorescence images of frozen sections. The results demonstrated that the AGWLP method achieved superior performance in both location and shape recovery of fluorescence distribution. This enabled FMT more suitable and practical for in vivo visualization of biomarkers.
机译:荧光分子断层扫描(FMT)作为临床前研究中的一种强大的成像技术,可以通过无创地检测荧光标记的探针来提供生物标记的三维分布。然而,由于光散射效应和反问题的不适,开发一种有效的重建方法具有挑战性,该方法可以提供荧光分布的准确位置和形态。在这项研究中,我们提出了一种新颖的自适应高斯加权拉普拉斯先验(AGWLP)正则化方法,该方法假定任意两个体素之间的荧光强度方差与它们的高斯距离都具有非线性相关性。它利用自适应高斯核参数策略在FMT中实现准确的形态重建。为了评估AGWLP方法的性能,我们进行了数值模拟和体内实验。将结果与快速迭代收缩(FIS)阈值化方法,分裂的Bregman分辨电视(SBRTV)归一化方法和高斯加权拉普拉斯先验(GWLP)归一化方法进行了比较。我们验证了针对冷冻切片的平面荧光图像的体内成像结果。结果表明,AGWLP方法在荧光分布的位置和形状恢复方面均实现了卓越的性能。这使得FMT更适合于生物标志物的体内可视化。

著录项

  • 来源
    《IEEE Transactions on Medical Imaging》 |2019年第12期|2726-2734|共9页
  • 作者单位

    Inst Automat CAS Key Lab Mol Imaging Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100080 Peoples R China;

    Inst Automat CAS Key Lab Mol Imaging Beijing 100190 Peoples R China|Univ Chinese Acad Sci Sch Artificial Intelligence Beijing 100080 Peoples R China|Beijing Key Lab Mol Imaging Beijing 100190 Peoples R China;

    Inst Automat CAS Key Lab Mol Imaging Beijing 100190 Peoples R China|Beijing Key Lab Mol Imaging Beijing 100190 Peoples R China|Beihang Univ Beijing Adv Innovat Ctr Big Data Based Precis Med Beijing 100191 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Fluorescence tomography; multi-modality fusion; brain;

    机译:荧光层析成像多模态融合脑;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号