首页> 外文期刊>IEEE Transactions on Medical Imaging >Electrical conductivity imaging via contactless measurements
【24h】

Electrical conductivity imaging via contactless measurements

机译:通过非接触式测量进行电导率成像

获取原文
获取原文并翻译 | 示例
           

摘要

A new imaging modality is introduced to image electrical conductivity of biological tissues via contactless measurements. This modality uses magnetic excitation to induce currents inside the body and measures the magnetic fields of the induced currents. In this study, the mathematical basis of the methodology is analyzed and numerical models are developed to simulate the imaging system. The induced currents are expressed using the A/spl I.oarr/-/spl phi/ formulation of the electric field where A/spl I.oarr/ is the magnetic vector potential and /spl phi/ is the scalar potential function. It is assumed that A/spl I.oarr/ describes the primary magnetic vector potential that exists in the absence of the body. This assumption considerably simplifies the solution of the secondary magnetic fields caused by induced currents. In order to solve /spl phi/ for objects of arbitrary conductivity distribution a three-dimensional (3-D) finite-element method (FEM) formulation is employed. A specific 7/spl times/7-coil system is assumed nearby the upper surface of a 10/spl times/10/spl times/5-cm conductive body. A sensitivity matrix, which relates the perturbation in measurements to the conductivity perturbations, is calculated. Singular-value decomposition of the sensitivity matrix shows various characteristics of the imaging system. Images are reconstructed using 500 voxels in the image domain, with truncated pseudoinverse. The noise level is assumed to produce a representative signal-to-noise ratio (SNR) of 80 dB. It is observed that it is possible to identify voxel perturbations (of volume 1 cm/sup 3/) at 2 cm depth. However, resolution gradually decreases for deeper conductivity perturbations.
机译:引入了新的成像方式,以通过非接触式测量对生物组织的电导率成像。这种方式利用磁激励在人体内部感应电流并测量感应电流的磁场。在这项研究中,分析了该方法的数学基础,并开发了数值模型来模拟成像系统。感应电流使用电场的A / spl I.oarr /-/ spl phi /表示,其中A / spl I.oarr /是磁矢量势,/ spl phi /是标量势函数。假设A / spl I.oarr /描述了在没有身体的情况下存在的主要磁矢量势。这种假设大大简化了感应电流引起的次级磁场的求解。为了求解任意电导率分布的对象,采用了三维(3-D)有限元方法(FEM)公式。假设在10 / spl次/ 10 / spl次/ 5cm导体的上表面附近有一个特定的7 / spl次/ 7线圈系统。计算灵敏度矩阵,该矩阵将测量中的扰动与电导率扰动相关联。灵敏度矩阵的奇异值分解显示了成像系统的各种特性。在图像域中使用500个体素(具有截短的伪逆)来重建图像。假定噪声电平产生80 dB的代表性信噪比(SNR)。可以观察到在2 cm深度处可以识别体素摄动(体积1 cm / sup 3 /)。但是,随着电导率扰动的加深,分辨率逐渐降低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号