首页> 外文期刊>IEEE Transactions on Magnetics >Martensitic Transformation and Magnetocaloric Effect in Co-Doped Ni–Mn–In Ferromagnetic Shape Memory Alloy
【24h】

Martensitic Transformation and Magnetocaloric Effect in Co-Doped Ni–Mn–In Ferromagnetic Shape Memory Alloy

机译:共掺杂Ni-Mn-in铁磁形状记忆合金中的马氏体转化和磁热效应

获取原文
获取原文并翻译 | 示例
       

摘要

In this work, we present the detailed results of magnetic, structural, and magnetocaloric measurements in Ni–Mn–In-based Heusler alloys, namely, Ni 51 Mn 32.8 In 16.2 , Ni 50.2 Mn 33.6 In 16.2 , and Ni 51 Mn 33.4 In 15.6 . The characteristics of magnetostructural coupling play an important role in the magnetic field-driven behavior of these alloys. A small variation in the stoichiometry composition broadens the magnetic entropy change curve and shifts the critical temperatures by as much as 48 K. The effect of cobalt doping on the magnetic, structural, and magnetocaloric properties in these multifunctional alloys is investigated through characterizing Ni 50 Co 2 Mn 35 In 13 and Ni 45 Co 5 Mn 37 In 13 samples. Cobalt doping affects the martensitic and magnetic transformation temperatures and enhances the ferromagnetic properties of the parent austenitic phase. Therefore, the magnetization change accompanying the martensitic transformation is significantly improved, resulting in a large magnetic entropy change of 21.6 J kg $^{-1},,ext{K}^{-1}$ at 1.5 T. Additionally, Co doping broadens the operating temperature window to 21 K around room temperature. Consequently, a significant effective refrigeration capacity of 254 J kg −1 for 1.5 T is obtained which is comparable or even superior to that of the high-performance, though expensive, rare-earth-based magnetocaloric refrigerants. The high performance, low cost, nontoxicity, and tunability make these alloys of great interest and promising prospect for an affordable magnetic refrigeration system.
机译:在这项工作中,我们介绍了Ni-Mn-In的Heusler合金中的磁,结构和磁热测量的详细结果,即Ni 51 mn 32.8 16.2 ,ni 50.2 mn 33.6 16.2 ,和ni 51 mn 33.4 15.6 。磁性结构耦合的特性在这些合金的磁场驱动行为中起重要作用。化学计量组合物的小变化宽加磁熵变化曲线,并将临界温度转移到48 k。通过表征Ni 50 co <​​sub xmlns :mml =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> 2 mn 35 13 和ni 45 co <​​sub xmlns:mml = “http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> 5 mn 37 13 样本。钴掺杂会影响马氏体和磁性转化温度,并增强母体奥氏体相的铁磁性。因此,伴随着马氏体变换的磁化变化显着提高,导致磁熵变为21.6 kg <内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns :xlink =“http://www.w3.org/1999/xlink”> $ ^ { - 1} ,, text {k} ^ { - 1} $ 在1.5 t。另外,CO掺杂将工作温度窗口宽到室温下的21k。因此,254 kg - 1 获得1.5吨,可比较甚至优于高性能,虽然昂贵,稀土的磁热制冷剂。高性能,低成本,无毒性和可调性使这些具有实惠磁制冷系统的极大兴趣和有希望的前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号