首页> 外文期刊>IEEE Transactions on Magnetics >Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model
【24h】

Modeling of Magnetic Properties of Magnetorheological Elastomers Using JA Hysteresis Model

机译:JA滞后模型磁流变弹性体磁性性质的建模

获取原文
获取原文并翻译 | 示例
       

摘要

Magnetorheological elastomers (MREs) are composite materials that consist of magnetically permeable particles in a nonmagnetic polymeric matrix. Under the influence of an external magnetic field, a reversible deformation change occurs in the mechanical properties of these materials. Due to their coupled magnetomechanical response, these materials have been found suitable for a range of applications including tunable vibration absorbers, sensors, and actuators. Notably, improvement of such devices are prerequisites to efficient energy conversion systems, hence the need to understand further the MRE technology. The Jiles–Atherton (JA) theory takes into consideration the magneto-coupling experienced by effective domains in a magnetic material. Algorithm based on the theory yields five model parameters; saturation magnetization ( ${M} _{mathbf {s}}$ ), domain density ( ${a}$ ), domain coupling ( $lpha $ ), loss coefficient ( ${k}$ ), and reversibility ( ${c}$ ). Using JA theory, model parameters were calculated and linked to the physical attributes of Fe powder and isotropic MRE. The results show that the calculated ${M} _{mathbf {s}}$ for the MRE is reasonably related to that of the Fe powder by a factor of the particle’s volume fraction used in the MRE. The calculated ${k}$ , ${a}$ , and $lpha $ provided support for the reduced pinning factor, domain density, and increased domain coupling in the MRE due to the changes in the domain structure between the two materials. From the calculated JA parameters, finite-element modeling (FEM) of the MRE hysteresis loop was performed. The analysis showed that the modeled magnetic properties including coercivity, remanence, and coordinates of the hysteresis loop tip vary with geometric position.
机译:磁流变弹性体(MRE)是在非磁性聚合物基质中由磁性可渗透颗粒组成的复合材料。在外部磁场的影响下,在这些材料的机械性能下发生可逆变形变形。由于它们的耦合磁力学响应,已经发现这些材料适用于包括可调振动吸收器,传感器和致动器的一系列应用。值得注意的是,这些装置的改进是有效的能量转换系统的先决条件,因此需要了解更多的MRE技术。 JILE-ATHERTON(JA)理论考虑了磁性材料中有效畴所经历的磁耦合。基于理论的算法产生了五个模型参数;饱和磁化(<内联XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {m} _ { mathbf {s}} $ ),域密度(<内联 - 公式xmlns:mml =“http:/ / www.w3.org/1998/math/mathml“xmlns:xlink =”http://www.w3.org/1999/xlink“> $ {a} $ ),域耦合(<内联 - 公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http:// www .w3.org / 1999 / xlink“> $ alpha $ ),丢失系数(<内联 - 公式XMLNS:MML =” http://www.w3.org/1998/math/mathml“xmlns:xlink =”http://www.w3.org/1999/xlink“> $ {k} $ ),以及可逆性(<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http: //www.w3.org/1999/xlink“> $ {c} $ )。使用JA理论,计算模型参数并与Fe粉和各向同性MRE的物理属性相关联。结果表明,计算出的<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink” > $ {m} _ {m} _ { mathbf {s}} $ MRE合理地与FE粉末相关联MRE中使用的粒子体积分数的因素。计算的<内联公式XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ {k} $ ,<内联公式xmlns:mml =“http://www.w3.org/1998/math/mathml” XMLNS:XLink =“http://www.w3.org/1999/xlink”> $ {a} $ ,和<内联XMLNS:MML =“http://www.w3.org/1998/math/mathml”xmlns:xlink =“http://www.w3.org/1999/xlink”> $ alpha $ 由于两种材料之间的域结构的变化,为MRE中的降低的固定因子,域密度和增加的域耦合提供了支持。从计算出的JA参数,执行MRE滞后回路的有限元建模(FEM)。该分析表明,模型磁性特性包括渗透,滞留和磁滞回路尖端的坐标,而滞后环尖端的坐标随几何位置而变化。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号