...
首页> 外文期刊>IEEE Transactions on Information Theory >Good convolutional codes for the precoded (1-D)(1+D)/sup n/ partial-response channels
【24h】

Good convolutional codes for the precoded (1-D)(1+D)/sup n/ partial-response channels

机译:预编码(1-D)(1 + D)/ sup n /部分响应通道的良好卷积码

获取原文
获取原文并翻译 | 示例
           

摘要

We extend the coding technique for the 1-D channel, due to Wolf and Ungerboeck, to the case of the (1-D)(1+D)/sup n/ channel. The technique employs a convolutional encoder, a precoder, and the channel in cascade. A computer-aided search for channel codes with large minimum free squared Euclidean distance, d/sub free//sup 2/, is introduced. The search is limited to a class of convolutional encoders for which an encoder with constraint length /spl nu/ generates a decoder trellis with 2/sup /spl nu// states only, as opposed to 2/sup /spl nu/+n+1/ states obtained when a general convolutional encoder is used. These channel codes are said to be totally trellis-matched (TTM) to the (1-D)(1+D)/sup n/ channel. A limitation on the maximum zero-run length, L/sub MAX/ is attained by choosing a nontrivial coset of the convolutional code. A class of coset representatives from which the resulting run-length-limited channel codes are TTM is determined. While minimal encoders generate channel codes containing no flawed codewords, it is shown that some nonminimal encoders do the same while achieving larger dg/sub free//sup 2/. Both types of encoders are considered in the search. Many new channel codes for the (1-D)(1+D)/sup 2/ and the (1-D)(1+D)/sup 3/ channels, with diverse rates and decoding complexities, are tabulated. The codes have relatively low decoding complexity for rates up to 0.8. Two of the new channel codes are compared to a matched spectral null (MSN) code. With the same decoding complexity and code rate, one of these two new channel codes has a smaller d/sub free//sup 2/ and larger L/sub MAX/ than the MSN code. However, with slightly higher decoding complexity, the second new channel code outperforms the MSN code.
机译:由于Wolf和Ungerboeck的缘故,我们将1-D通道的编码技术扩展到(1-D)(1 + D)/ sup n /通道的情况。该技术采用卷积编码器,预编码器和级联通道。引入了一种计算机辅助搜索,该搜索具有较大的最小自由平方欧几里德距离,d / sub free // sup 2 /。搜索仅限于一类卷积编码器,对于该卷积编码器,约束长度为/ spl nu /的编码器仅生成具有2 / sup / spl nu //状态的解码器网格,而不是2 / sup / spl nu / + n + 1 /使用通用卷积编码器时获得的状态。据说这些通道代码与(1-D)(1 + D)/ sup n /通道完全网格匹配(TTM)。通过选择卷积码的一个平凡的陪集,可以达到最大零游程长度L / sub MAX /的限制。确定一类陪集代表,从其得到的游程长度限制的信道代码是TTM。尽管最小编码器生成的信道代码不包含有缺陷的码字,但可以看出,一些非最小编码器在达到较大的dg / sub free // sup 2 /的同时执行相同的操作。搜索中会考虑两种类型的编码器。将(1-D)(1 + D)/ sup 2 /和(1-D)(1 + D)/ sup 3 /通道的许多新通道代码制成表格,具有不同的速率和解码复杂性。这些码具有相对较低的解码复杂度,速率高达0.8。将两个新的信道代码与匹配的频谱零(MSN)代码进行比较。在相同的解码复杂度和编码率的情况下,这两个新信道代码之一的d / sub free // sup 2 /较小,而L / sub MAX /大于MSN代码。但是,由于解码复杂度稍高,第二个新的频道代码的性能优于MSN代码。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号