首页> 外文期刊>Image Processing, IEEE Transactions on >3-D Reconstruction of Microtubules From Multi-Angle Total Internal Reflection Fluorescence Microscopy Using Bayesian Framework
【24h】

3-D Reconstruction of Microtubules From Multi-Angle Total Internal Reflection Fluorescence Microscopy Using Bayesian Framework

机译:使用贝叶斯框架从多角度全内反射荧光显微镜对微管进行3D重建

获取原文
获取原文并翻译 | 示例
       

摘要

Total internal reflection fluorescence (TIRF) microscopy excites a thin evanescent field which theoretically decays exponentially. Each TIRF image is actually the projection of a 3-D volume and hence cannot alone produce an accurate localization of structures in the $z$-dimension, however, it provides greatly improved axial resolution for biological samples. Multiple angle-TIRF microscopy allows controlled variation of the incident angle of the illuminating laser beam, thus generating a set of images of different penetration depths with the potential to reconstruct the 3-D volume of the sample. With the ultimate goal to quantify important biological parameters of microtubules, we present a method to reconstruct 3-D position and orientation of microtubules based on multi-angle TIRF data, as well as experimental calibration of the actual decay function of the evanescent field at each angle. We validate our method using computer simulations, by creating a phantom simulating the curvilinear characteristics of microtubules and project the artificially constructed volume into a set of TIRF image for different penetration depth. The reconstructed depth information for the phantom data is shown to be accurate and robust to noise. We apply our method to microtubule TIRF images of ${hbox{PtK}}_{2}$ cells in vivo. By comparing microtubule curvatures of the reconstruction results and several electron microscopy (EM) images of vertically sliced sample of microtubules, we find that the curvature statistics of our reconstruction agree well with the ground truth (EM data). Quantifying the distribution of microtubule curvature reveals an interesting discovery that microtubules can buckle and form local bendings of considerably small radius of curvature which is also visually spotted on the EM images, while microtubule bendings on a larger scale gener-n-nally have a much larger radius and cannot bear the stress of a large curvature. The presented method has the potential to provide a reliable tool for 3-D reconstruction and tracking of microtubules.
机译:全内反射荧光(TIRF)显微镜激发出一个消逝的薄场,理论上它呈指数衰减。每个TIRF图像实际上都是3-D体积的投影,因此不能单独在$ z $维度上生成结构的精确定位,但是,它为生物样品提供了大大提高的轴向分辨率。多角度TIRF显微镜可控制照明激光束的入射角变化,从而生成一组具有不同穿透深度的图像,并具有重建样品的3-D体积的潜力。为了量化微管的重要生物学参数的最终目标,我们提出了一种基于多角度TIRF数据重建微管的3-D位置和方向的方法,以及每个瞬逝场的实际衰减函数的实验校准角度。我们使用计算机模拟来验证我们的方法,方法是创建一个模拟微管曲线特征的模型,然后将人工构建的体积投影到一组不同穿透深度的TIRF图像中。幻影数据的重建深度信息显示为准确且对噪声稳定。我们将我们的方法应用于体内$ {hbox {PtK}} _ {2} $细胞的微管TIRF图像。通过比较重建结果的微管曲率和垂直切片的微管样品的几个电子显微镜(EM)图像,我们发现重建的曲率统计数据与地面真实情况(EM数据)吻合良好。量化微管曲率的分布揭示了一个有趣的发现,即微管可以弯曲并形成相当小的曲率半径的局部弯曲,该弯曲也可以从视觉上观察到在EM图像上,而较大规模的微管弯曲通常会大得多。半径,不能承受大曲率的应力。提出的方法有可能为3D重建和微管跟踪提供可靠的工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号