...
首页> 外文期刊>IEEE Transactions on Image Processing >Learning Hybrid Representation by Robust Dictionary Learning in Factorized Compressed Space
【24h】

Learning Hybrid Representation by Robust Dictionary Learning in Factorized Compressed Space

机译:通过鲁棒字典学习学习混合表示分解压缩空间的混合表示

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, we investigate the robust dictionary learning (DL) to discover the hybrid salient low-rank and sparse representation in a factorized compressed space. A Joint Robust Factorization and Projective Dictionary Learning (J-RFDL) model is presented. The setting of J-RFDL aims at improving the data representations by enhancing the robustness to outliers and noise in data, encoding the reconstruction error more accurately and obtaining hybrid salient coefficients with accurate reconstruction ability. Specifically, J-RFDL performs the robust representation by DL in a factorized compressed space to eliminate the negative effects of noise and outliers on the results, which can also make the DL process efficient. To make the encoding process robust to noise in data, J-RFDL clearly uses sparse L-2,L- 1-norm that can potentially minimize the factorization and reconstruction errors jointly by forcing rows of the reconstruction errors to be zeros. To deliver salient coefficients with good structures to reconstruct given data well, J-RFDL imposes the joint low-rank and sparse constraints on the embedded coefficients with a synthesis dictionary. Based on the hybrid salient coefficients, we also extend J-RFDL for the joint classification and propose a discriminative J-RFDL model, which can improve the discriminating abilities of learnt coefficients by minimizing the classification error jointly. Extensive experiments on public datasets demonstrate that our formulations can deliver superior performance over other state-of-the-art methods.
机译:在本文中,我们研究了稳健的字典学习(DL),以发现分解压缩空间中的混合突出低级和稀疏表示。提出了一个鲁棒性分解和投影词典学习(J-RFDL)模型。 J-RFDL的设置旨在通过提高数据的鲁棒性和数据中的噪声来改善数据表示,更准确地编码重建误差并获得具有精确的重建能力的混合突出系数。具体地,J-RFDL在分解压缩空间中的DL执行鲁棒表示,以消除噪声和异常值对结果的负面影响,这也可以使DL处理有效。为了使编码过程对数据中的噪声稳健,J-RFDL清楚地使用稀疏L-2,L-1-NOM,这可以通过强制重建误差的行为零来引起分解和重建错误。为了使具有良好结构的突出系数来重建给定数据阱,J-RFDL对嵌入式词典的嵌入系数施加关节低级和稀疏约束。基于混合突出系数,我们还扩展了J-RFDL的联合分类,提出了一种判别的J-RFDL模型,其可以通过将分类误差联合最小化来改善学习系数的区分能力。公共数据集的广泛实验表明,我们的配方可以在其他最先进的方法中提供卓越的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号