首页> 外文期刊>Geoscience and Remote Sensing, IEEE Transactions on >Lunar Microwave Brightness Temperature: Model Interpretation and Inversion of Spaceborne Multifrequency Observations by a Neural Network Approach
【24h】

Lunar Microwave Brightness Temperature: Model Interpretation and Inversion of Spaceborne Multifrequency Observations by a Neural Network Approach

机译:月球微波亮度温度:神经网络方法对星载多频观测的模型解释和反演

获取原文
获取原文并翻译 | 示例
           

摘要

Understanding the lunar physical properties has been attracting the interest of scientists for many years. This paper is devoted to a numerical study on the capability of retrieving the thickness of the first layer of regolith as well as the temperature profile behavior from satellite-based multifrequency radiometers at frequencies ranging from 1 to 24 GHz. To this purpose, a forward thermal–electromagnetic numerical model, able to simulate the response of the lunar material in terms of upward brightness temperature $(TB)$, has been used. The input parameters of the forward model have been set after a detailed investigation of the scientific literature and available measurements. Different choices of input parameters are possible, and their selection is carefully discussed. By exploiting a Monte Carlo approach to generate a synthetic data set of forward-model simulations, a physically based inversion methodology has been developed using a neural network technique. The latter has been designed to perform, from multifrequency $TB$'s, the temperature estimation at the lunar surface, the discrimination of the subsurface material type, and the estimate of the near-surface regolith thickness. Results indicate that, within the simplified scenarios obtained by interposing strata of rock, ice, and regolith, the probability of detection of the presence of discontinuities beneath the lunar crust is on the order of 84%. The estimation uncertainty of the near-surface regolith thickness estimation ranges from 11 to 81 cm, whereas for the surface temperature, its estimation uncertainty ranges from about 1.5 K to 3 K, conditioned to the choice of radiometric frequencies and noise levels.
机译:多年来,了解月球的物理特性一直吸引着科学家的兴趣。本文致力于数值研究,研究了从基于卫星的多频辐射计在1至24 GHz频率范围内获得的第一层硬质合金层的厚度以及温度剖面行为的能力。为了这个目的,已经使用了能够模拟月球物质在向上的亮度温度(TB)$方面的响应的正向热-电磁数值模型。在对科学文献和可用测量方法进行了详细研究之后,才设置了正向模型的输入参数。输入参数的不同选择是可能的,并仔细讨论了它们的选择。通过利用蒙特卡洛方法生成前向模型模拟的综合数据集,已经使用神经网络技术开发了基于物理的反演方法。后者的设计目的是从多频TB $进行月球表面的温度估算,地下物质类型的判别以及近地表硬石厚度的估算。结果表明,在通过插入岩石,冰层和碎屑岩地层获得的简化方案中,检测到月球壳下方存在不连续性的可能性约为84%。近地表碎屑岩厚度估计的估计不确定性在11至81 cm的范围内,而对于表面温度,其估计不确定性在大约1.5 K至3 K的范围内,这取决于辐射频率和噪声水平的选择。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号