首页> 外文期刊>IEEE Transactions on Geoscience and Remote Sensing >Soil Phosphorus and Nitrogen Predictions Across Spatial Escalating Scales in an Aquatic Ecosystem Using Remote Sensing Images
【24h】

Soil Phosphorus and Nitrogen Predictions Across Spatial Escalating Scales in an Aquatic Ecosystem Using Remote Sensing Images

机译:使用遥感图像的水生生态系统中空间尺度尺度上的土壤磷和氮预测

获取原文
获取原文并翻译 | 示例
       

摘要

The incorporation of remote sensing (RS) data into digital soil models has shown success to improve soil predictions. However, the effects of multiresolution imagery on modeling of biogeochemical soil properties in aquatic ecosystems are still poorly understood. The objectives of this study were the following: 1) to develop prediction models for soil total phosphorus (TP) and total nitrogen (TN) utilizing RS images and environmental ancillary data at three different resolutions; 2) to identify controlling factors of the spatial distribution of soil TP and TN; and 3) to elucidate the effects of different spatial resolutions of RS images on inferential modeling. Soil cores were collected $(n=108)$ from the top 10 cm in a subtropical wetland: Water Conservation Area-2A, the Florida Everglades, USA. The spectral data and derived indices from RS images, which have different spatial resolutions, included the following: MODIS (500 m resampled to 250 m), Landsat ETM+ (30 m), and SPOT (10 m). Block kriging and random forest (RF) were employed to predict soil TP and TN using RS-image-derived spectral input variables, environmental ancillary data, and soil observations. The RF models showed $R^{2}$ between 0.90 and 0.93 and root mean square error between 100.4 and 115.9 $hbox{mg}cdothbox{kg}^{-1}$ for TP and between 1.45 and 1.52 $hbox{g}cdothbox{kg}^{-1}$ for TN. Soil TP was mainly predicted from RS-derived spectral indices that infer on biotic/vegetation characteristics, whereas soil TN was predicted using a combination of biotic/vegetation, topographic, and hydrologic variables. Results suggest that the spectral data informed soil models have excellent predictive capabilities in this aquatic - cosystem. Interestingly, there was no noticeable distinction among different spatial resolutions of RS images to develop prediction models for soil TP and TN in terms of error assessment. However, the variability and complexity of soil TP and TN variations were much better expressed with the finer resolution ${rm RF}_{rm SPOT}$ model than the coarser resolution ${rm RF}_{rm MODIS}$ model as demonstrated using entropy.
机译:将遥感(RS)数据整合到数字土壤模型中已显示出成功地改善了土壤预测。但是,对多分辨率图像对水生生态系统生物地球化学土壤特性建模的影响仍然知之甚少。这项研究的目的如下:1)利用三种不同分辨率的RS图像和环境辅助数据,开发土壤总磷(TP)和总氮(TN)的预测模型; 2)确定土壤TP和TN空间分布的控制因素;和3)阐明RS图像不同空间分辨率对推论建模的影响。从美国亚热带湿地:水保区2A,美国佛罗里达大沼泽地的前10厘米处收集土壤核心(n = 108)$。来自RS图像的光谱数据和具有不同空间分辨率的索引包括以下内容:MODIS(500 m重采样到250 m),Landsat ETM +(30 m)和SPOT(10 m)。利用源自RS图像的光谱输入变量,环境辅助数据和土壤观测结果,采用块克里格法和随机森林(RF)来预测土壤的TP和TN。 RF模型显示TP的$ R ^ {2} $在0.90和0.93之间,均方根误差在100.4和115.9 $ hbox {mg} cdothbox {kg} ^ {-1} $之间,TP在1.45和1.52 $ hbox {g之间} cdboxbox {kg} ^ {-1} $(适用于TN)。土壤TP主要是根据RS得出的推断生物/植被特征的光谱指数预测的,而土壤TN是使用生物/植被,地形和水文变量的组合预测的。结果表明,以光谱数据为依据的土壤模型在这种水生共生系统中具有出色的预测能力。有趣的是,在误差评估方面,RS图像的不同空间分辨率之间没有显着区别,可用于开发土壤TP和TN的预测模型。但是,与较粗分辨率的$ {rm RF} _ {rm MODIS} $模型相比,较精细的分辨率$ {rm RF} _ {rm SPOT} $模型表现出的土壤TP和TN变化的变异性和复杂性要好得多。使用熵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号