首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >CRISTA: A New Paradigm for Low-Power, Variation-Tolerant, and Adaptive Circuit Synthesis Using Critical Path Isolation
【24h】

CRISTA: A New Paradigm for Low-Power, Variation-Tolerant, and Adaptive Circuit Synthesis Using Critical Path Isolation

机译:CRISTA:采用关键路径隔离的低功耗,耐变化和自适应电路综合的新范例

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Design considerations for robustness with respect to variations and low-power operations typically impose contradictory design requirements. Low-power design techniques such as voltage scaling, dual- $V_{{rm th}}$, etc., can have a large negative impact on parametric yield. In this paper, we propose a novel paradigm for low-power variation-tolerant circuit design called CRitical path ISolation for Timing Adaptiveness (CRISTA), which allows aggressive voltage scaling. The principal idea includes the following: 1) isolate and predict the set of possible paths that may become critical under process variations; 2) ensure that they are activated rarely; and 3) avoid possible delay failures in the critical paths by dynamically switching to two-cycle operation (assuming all standard operations are single cycle), when they are activated. This allows us to operate the circuit at reduced supply voltage while achieving the required yield. Simulation results on a set of benchmark circuits with Berkeley-predictive-technology-model [BPTM 70 nm: Berkeley predictive technology model] 70-nm devices that show an average of 60% improvement in power with small overhead in performance and 18% overhead in die area compared to conventional design. We also present two applications of the proposed methodology that include the following: 1) pipeline design for low power and 2) temperature-adaptive circuit design.
机译:关于变化和低功耗操作的鲁棒性的设计考虑通常会提出矛盾的设计要求。低功耗设计技术(例如电压缩放,双重$ V _ {{rm th}} $等)可能会对参数良率产生很大的负面影响。在本文中,我们提出了一种适用于低功耗,耐变化的电路设计的新颖范例,称为时序自适应的CRitical Path ISolation(CRISTA),它可以实现大幅度的电压缩放。主要思想包括以下内容:1)隔离并预测在过程变化下可能变得至关重要的可能路径的集合; 2)确保它们很少被激活; 3)通过在激活时动态切换到两个周期的操作(假设所有标准操作都是单个周期)来避免关键路径中可能的延迟故障。这使我们能够在降低的电源电压下操作电路,同时达到所需的良率。使用Berkeley预测技术模型[BPTM 70 nm:Berkeley预测技术模型]的一组基准电路的仿真结果,表明70 nm器件的功耗平均提高了60%,而性能开销很小,而功耗为18%。模具面积与传统设计相比。我们还介绍了所提出方法的两个应用,其中包括:1)低功耗的管线设计和2)温度适应性电路设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号