首页> 外文期刊>IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems >Independent and Interdependent Latch Setup/Hold Time Characterization via Newton–Raphson Solution and Euler Curve Tracking of State-Transition Equations
【24h】

Independent and Interdependent Latch Setup/Hold Time Characterization via Newton–Raphson Solution and Euler Curve Tracking of State-Transition Equations

机译:通过牛顿-拉夫森解和状态转移方程的欧拉曲线跟踪独立和相互依赖的闩锁建立/保持时间特性

获取原文
获取原文并翻译 | 示例
           

摘要

Characterizing setup/hold times of latches and registers, which is a task crucial for achieving timing closure of large digital designs, typically occupies months of computation in semiconductor industries. We present a novel approach to speed up latch characterization by formulating the setup/hold time problem as a scalar nonlinear equation $h(tau_{s}, tau_{h}) = 0$; this nonlinear algebraic formulation is derived from, and embeds within it, the state-transition function of the latch. We first present a technique to characterize setup and hold times independently of each other: by decoupling $h(tau_{s}, tau_{h}) = 0$ into two equations $h(tau_{s}) = 0$ and $h( tau_{h}) = 0$ and solving each equation using the Newton–Raphson method. Next, we also present a method for interdependent characterization of latch setup/hold times—a core component of techniques for pessimism reduction in timing analysis. We achieve this by solving the underdetermined nonlinear equation $h(tau_{s}, tau_{h}) = 0$ using a Moore–Penrose pseudoinverse-based Newton method. Furthermore, we use null-space information from the Newton''''s Jacobian matrix to efficiently find constant-clock-to- $q$ contours (in the setup/hold time plane) via an Euler–Newton curve-tracing procedure. We validate fast convergence and computational advantage for independent characterization on transmission gate and $hbox{C}^{2}hbox{MOS}$ latch/register structures, obtaining speedups of $2.5{-}10 ti-mes$ , at high levels of accuracy, over the current standard of binary search. We validate the method for interdependent characterization on true single-phased clock and $hbox{C}^{2} hbox{MOS}$ , obtaining speedups of more than 10 $times$ for tracing 17–24 points, over prior approaches while achieving superior accuracy; this speedup linearly increases with the precision with which curve tracing is desired. We also apply our method for interdependent characterization on a transmission gate register to illustrate limitations of our method.
机译:表征锁存器和寄存器的建立/保持时间,这对于实现大型数字设计的时序收敛至关重要,这在半导体行业通常要花费数月的计算时间。我们通过将建立/保持时间问题公式化为标量非线性方程$ h(tau_ {s},tau_ {h})= 0 $,提出了一种新颖的方法来加快锁存器表征。这种非线性代数公式是从锁存器的状态转换函数派生并嵌入其中的。我们首先提出一种技术来彼此独立地建立和保持时间:通过将$ h(tau_ {s},tau_ {h})= 0 $解耦为两个方程$ h(tau_ {s})= 0 $和$ h(tau_ {h})= 0 $并使用牛顿-拉夫森方法求解每个方程。接下来,我们还将介绍一种用于互锁表征锁存器建立/保持时间的方法-时序分析中减少悲观情绪的技术的核心组成部分。我们通过使用基于Moore–Penrose伪逆的牛顿法求解欠定的非线性方程$ h(tau_ {s},tau_ {h})= 0 $来实现这一目标。此外,我们使用来自牛顿雅可比矩阵的零空间信息,通过欧拉-牛顿曲线跟踪程序有效地找到恒定时钟到$ q $的轮廓(在建立/保持时间平面内)。我们验证了传输门和$ hbox {C} ^ {2} hbox {MOS} $锁存/寄存器结构上的独立表征的快速收敛性和计算优势,在高电平下可获得$ 2.5 {-} 10 ti-mes $的加速。精度,超过目前的二进制搜索标准。我们验证了用于在真正的单相时钟和$ hbox {C} ^ {2} hbox {MOS} $上进行相互依赖的表征的方法,在跟踪17–24点的过程中,获得了超过10 $ times $的加速,超过了以前的方法,同时实现了精度高;这种加速随着所需曲线跟踪的精度线性增加。我们还将我们的方法用于传输门寄存器的相互依存特性,以说明我们方法的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号