首页> 外文期刊>IEEE Transactions on Circuits and Systems. 1 >Taming chaos: stabilization of aperiodic attractors by noise [olfactory system model]
【24h】

Taming chaos: stabilization of aperiodic attractors by noise [olfactory system model]

机译:驯服混乱:通过噪音稳定非周期性吸引子[嗅觉系统模型]

获取原文
获取原文并翻译 | 示例
       

摘要

A model named "KIII" of the olfactory system contains an array of 64 coupled oscillators simulating the olfactory bulb (OB), with negative and positive feedback through low-pass filter lines from single oscillators simulating the anterior olfactory nucleus (AON) and prepyriform cortex (PC). It is implemented in C to run on Macintosh, IBM, or UNIX platforms. The output can be set by parameter optimization to point, limit cycle, quasi-periodic, or aperiodic (presumably chaotic) attractors. The first three classes of solutions are stable under variations of parameters and perturbations by input, but they are biologically unrealistic. Chaotic solutions simulate the properties of time-dependent densities of olfactory action potentials and EEGs, but they transit into the basins of point, limit cycle, or quasi-periodic attractors after only a few seconds of simulated run time. Despite use of double precision arithmetic giving 64-bit words, the KIII model is exquisitely sensitive to changes in the terminal bit of parameters and inputs. The global stability decreases as the number of coupled oscillators in the OB is increased, indicating that attractor crowding reduces the size of basins in the model to the size of the digitizing step (/spl sim/10/sup -16/). Chaotic solutions having biological verisimilitude are robustly stabilized by introducing low-level, additive noise from a random number generator at two biologically determined points: rectified, spatially incoherent noise on each receptor input line, and spatially coherent noise to the AON, a global control point receiving centrifugal inputs from various parts of the forebrain. Methods are presented for evaluating global stability in the high dimensional system from measurements of multiple chaotic outputs. Ranges of stability are shown for variations of connection weights (gains) in the KIII model. The system is devised for pattern classification.
机译:嗅觉系统的名为“ KIII”的模型包含一个模拟嗅球(OB)的64个耦合振荡器的阵列,通过单个振荡器模拟前嗅核(AON)和梨状前皮层的低通滤波器线产生负反馈和正反馈(PC)。它用C实现以在Macintosh,IBM或UNIX平台上运行。可以通过参数优化将输出设置为点吸引器,极限环吸引器,准周期吸引器或非周期吸引器。前三类解决方案在参数和输入扰动的变化下是稳定的,但是从生物学上讲是不现实的。混沌解模拟了嗅觉动作电位和EEG随时间变化的密度特性,但仅在几秒钟的模拟运行时间后,它们便转变为点,极限环或准周期吸引子的盆。尽管使用给出64位字的双精度算术,KIII模型对参数和输入的终端位的变化非常敏感。全局稳定性随着OB中耦合振荡器数量的增加而降低,表明吸引子拥挤将模型中盆地的大小减小到数字化步骤的大小(/ spl sim / 10 / sup -16 /)。通过在两个生物学确定的点上引入来自随机数生成器的低级加性噪声,可以稳定地稳定具有生物学可及性的混沌解决方案:每个接收器输入线上的经校正的空间不相干噪声,以及对全局控制点AON的空间相干噪声接收来自前脑各个部位的离心输入。提出了通过测量多个混沌输出来评估高维系统整体稳定性的方法。在KIII模型中,显示了连接权重(增益)变化时的稳定性范围。该系统设计用于模式分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号