首页> 外文期刊>Circuits and Systems I: Regular Papers, IEEE Transactions on >A Hopf Resonator for 2-D Artificial Cochlea: Piecewise Linear Model and Digital Implementation
【24h】

A Hopf Resonator for 2-D Artificial Cochlea: Piecewise Linear Model and Digital Implementation

机译:用于二维人工耳蜗的Hopf谐振器:分段线性模型和数字实现

获取原文
获取原文并翻译 | 示例
           

摘要

The mammalian auditory system is able to process sounds over an extraordinarily large dynamic range, which makes it possible to extract information from very small changes both in sound amplitude and frequency. Evidently, response of the cochlea is essentially nonlinear, where it operates within Hopf bifurcation boundaries to maximize tuning and amplification. This paper presents a set of piecewise linear (PWL) and multiplierless piecewise linear (MLPWL1 and MLPWL2) active cochlear models, which mimic a range of behaviors, similar to the biological cochlea. These proposed models show similar dynamical characteristics of the Hopf equation for the active nonlinear artificial cochlea. Accordingly, a compact model structure is proposed upon which a 2-D cochlea is developed. The proposed models are investigated, in terms of their digital realization and hardware cost, targeting large scale implementation. Hardware synthesis and physical implementation on a FPGA show that the proposed models can reproduce precise active cochlea behaviors with higher performance and considerably lower computational costs in comparison with the original model. Results indicate that the MLPWL1 model has a lower computational overhead, precision, and hardware cost, while the PWL model has a higher precision and dynamically tracks the original model. On the other hand, the MLPWL2 model outperforms the others in terms of accuracy, dynamical tracking of the original model and implementation cost. The gain variations of the original, PWL, MLPWL1, and MLPWL2 models are 230, 100, 105, and 230 dB, respectively. The mean normalized root mean square errors (NRMSEs) of the PWL, MLPWL1, and MLPWL2 models are 0.11%, 11.97%, and 0.34%, respectively, as compared to the original cochlear model.
机译:哺乳动物的听觉系统能够处理非常大的动态范围内的声音,这使得有可能从声音振幅和频率的很小变化中提取信息。显然,耳蜗的响应本质上是非线性的,它在Hopf分支边界内运行以最大程度地提高调谐和放大效果。本文介绍了一组分段线性(PWL)和无乘性分段线性(MLPWL1和MLPWL2)主动耳蜗模型,它们模拟了一系列行为,类似于生物耳蜗。这些提出的模型显示出主动非线性人工耳蜗的Hopf方程的相似动力学特性。因此,提出了在其上开发2-D耳蜗的紧凑模型结构。针对大规模实现,研究了提出的模型的数字实现和硬件成本。在FPGA上的硬件综合和物理实现表明,与原始模型相比,所提出的模型可以以更高的性能和更低的计算成本来再现精确的主动耳蜗行为。结果表明,MLPWL1模型具有较低的计算开销,精度和硬件成本,而PWL模型则具有较高的精度并可以动态跟踪原始模型。另一方面,MLPWL2模型在准确性,对原始模型的动态跟踪和实现成本方面优于其他模型。原始,PWL,MLPWL1和MLPWL2模型的增益变化分别为230、100、105和230 dB。与原始耳蜗模型相比,PWL,MLPWL1和MLPWL2模型的平均归一化均方误差(NRMSE)分别为0.11%,11.97%和0.34%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号