...
首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques
【24h】

Noise in Neuronal and Electronic Circuits: A General Modeling Framework and Non-Monte Carlo Simulation Techniques

机译:神经元和电子电路中的噪声:通用建模框架和非蒙特卡洛模拟技术

获取原文
获取原文并翻译 | 示例
           

摘要

The brain is extremely energy efficient and remarkably robust in what it does despite the considerable variability and noise caused by the stochastic mechanisms in neurons and synapses. Computational modeling is a powerful tool that can help us gain insight into this important aspect of brain mechanism. A deep understanding and computational design tools can help develop robust neuromorphic electronic circuits and hybrid neuroelectronic systems. In this paper, we present a general modeling framework for biological neuronal circuits that systematically captures the nonstationary stochastic behavior of ion channels and synaptic processes. In this framework, fine-grained, discrete-state, continuous-time Markov chain models of both ion channels and synaptic processes are treated in a unified manner. Our modeling framework features a mechanism for the automatic generation of the corresponding coarse-grained, continuous-state, continuous-time stochastic differential equation models for neuronal variability and noise. Furthermore, we repurpose non-Monte Carlo noise analysis techniques, which were previously developed for analog electronic circuits, for the stochastic characterization of neuronal circuits both in time and frequency domain. We verify that the fast non-Monte Carlo analysis methods produce results with the same accuracy as computationally expensive Monte Carlo simulations. We have implemented the proposed techniques in a prototype simulator, where both biological neuronal and analog electronic circuits can be simulated together in a coupled manner.
机译:尽管神经元和突触的随机机制引起了相当大的可变性和噪音,但大脑的能量效率极高,并且功能极为强大。计算建模是一个强大的工具,可以帮助我们深入了解脑机制的这一重要方面。深入的了解和计算设计工具可以帮助开发强大的神经形态电子电路和混合神经电子系统。在本文中,我们为生物神经元电路提供了一个通用的建模框架,该框架可系统地捕获离子通道和突触过程的非平稳随机行为。在此框架中,以统一的方式处理离子通道和突触过程的细粒度,离散状态,连续时间的马尔可夫链模型。我们的建模框架具有一种机制,可以自动生成相应的粗粒度,连续状态,连续时间的随机微分方程模型,以用于神经元变异性和噪声。此外,我们将以前为模拟电子电路开发的非蒙特卡洛噪声分析技术重新用于时域和频域中神经元电路的随机表征。我们验证了快速的非蒙特卡洛分析方法所产生的结果与计算上昂贵的蒙特卡洛模拟具有相同的准确性。我们已经在原型模拟器中实现了建议的技术,在该模拟器中,可以耦合方式一起模拟生物神经元电路和模拟电子电路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号