...
首页> 外文期刊>IEEE transactions on biomedical circuits and systems >Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype
【24h】

Efficient Reward-Based Structural Plasticity on a SpiNNaker 2 Prototype

机译:Spinnaker 2原型的高效奖励结构可塑性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Advances in neuroscience uncover the mechanisms employed by the brain to efficiently solve complex learning tasks with very limited resources. However, the efficiency is often lost when one tries to port these findings to a silicon substrate, since brain-inspired algorithms often make extensive use of complex functions, such as random number generators, that are expensive to compute on standard general purpose hardware. The prototype chip of the second generation SpiNNaker system is designed to overcome this problem. Low-power advanced RISC machine (ARM) processors equipped with a random number generator and an exponential function accelerator enable the efficient execution of brain-inspired algorithms. We implement the recently introduced reward-based synaptic sampling model that employs structural plasticity to learn a function or task. The numerical simulation of the model requires to update the synapse variables in each time step including an explorative random term. To the best of our knowledge, this is the most complex synapse model implemented so far on the SpiNNaker system. By making efficient use of the hardware accelerators and numerical optimizations, the computation time of one plasticity update is reduced by a factor of 2. This, combined with fitting the model into to the local static random access memory (SRAM), leads to 62% energy reduction compared to the case without accelerators and the use of external dynamic random access memory (DRAM). The model implementation is integrated into the SpiN-Naker software framework allowing for scalability onto larger systems. The hardware-software system presented in this paper paves the way for power-efficient mobile and biomedical applications with biologically plausible brain-inspired algorithms.
机译:神经科学的进步揭示了大脑所采用的机制,以有效地解决具有非常有限的资源的复杂学习任务。然而,当一个人尝试将这些发现移到硅衬底时,效率通常丢失,因为脑启动算法通常是广泛使用复杂的功能,例如随机数发生器,这是在标准通用硬件上计算的昂贵。第二代Spinnaker系统的原型芯片旨在克服这个问题。低功耗高级RISC机(ARM)处理器配备随机数发生器和指数函数加速器,可实现脑启动算法的有效执行。我们实施最近引入的基于奖励的突触突触采样模型,采用结构可塑性来学习功能或任务。模型的数值模拟需要在每个时间步骤中更新突触变量,包括探索随机术语。据我们所知,这是迄今为止在Spinnaker系统上实现的最复杂的突触模型。通过有效地利用硬件加速器和数值优化,一个可塑性更新的计算时间减少了2.如此,结合将模型拟合到本地静态随机存取存储器(SRAM),导致62%与无加速器的情况相比,能量减少以及外部动态随机存取存储器(DRAM)的使用。模型实现集成到旋转纳克软件框架中,允许在更大的系统上进行可扩展性。本文中提出的硬件软件系统为具有生物合理的脑卒中算法进行了高效的移动和生物医学应用的方式为高效的移动和生物医学应用程序铺平了道路。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号